AVR-программирование. Программирование микроконтроллеров AVR для начинающих. Самопрограммирование микроконтроллеров AVR Самопрограммирование avr


Что такое программа
Что такое алгоритм

Я, наверное, немного поспешил, назвав статью «Программирование микроконтроллеров AVR — первый шаг» . Скорее, эта статья, как и все последующие, — маленький шажок в мир микроконтроллеров. И таких «шажков» у нас будет много, пока не дойдем до того момента, когда сможем сказать: «Микроконтроллер — последний шаг». Но и это, скорее всего, из области фантастики — нельзя объять необъятное, — мир микроконтроллеров постоянно развивается и совершенствуется. Наша задача — сделать первый шаг, логическим итогом которого должна стать первая, самостоятельно разработанная и собранная конструкция на микроконтроллере. А дальше, -дальше каждый поплывет своей дорогой в совершенствовании полученных на сайте знаний. И тогда, завершающую статью можно будет назвать так: «Программирование микроконтроллеров — последний шажок первого шага» (надо же, как загнул!).
И так, приступаем.

Три условия для желающих освоить микроконтроллер

1. Желание и настойчивость в достижении поставленной цели
Этот пункт, на мой взгляд, — самый главный. Не будет желания, а еще хуже — настойчивого желания, то и не будет результата. Главное не пасовать и не останавливаться, проявите настойчивость — и все получится (и не только в деле освоения микроконтроллеров).
2. Знание устройства микроконтроллера.
Немаловажный фактор. Ведь, согласитесь, не зная как устроен микроконтроллер, что он имеет в своем распоряжении, как это все работает, — мы не сможем использовать все возможности микроконтроллера, выжать из него все, на что он способен.
Возможно и не стоит очень глубоко копаться во «внутренностях» микроконтроллера, но основное, так сказать — азы, мы знать должны (этим мы и будем заниматься на страницах сайта — изучать азы работы с микроконтроллером).
3. Знание команд управления микроконтроллерам.
Микроконтроллер, как собака (такое вот интересное сравнение), будет смотреть на нас умными глазами и вилять своим хвостом, пока не подадим ему команду на выполнение каких-то действий.
В отличие от умной собаки, микроконтроллер понимает намного больше команд — более 130 штук.
Так вот, чтобы микроконтроллер не только вилял хвостом, но и выполнял нужную нам работу, — необходимо знать команды управления им.
Сразу хочу сказать, для начала не надо зубрить все 130 команд, достаточно будет знания и половины (и даже меньше). К тому же, многие команды дублируют друг-друга. Но чем больше команд мы будем знать, тем эффективней мы сможем управлять микроконтроллером и тем красивее и элегантнее будут выходить из-под нашего пера программы.

Итого, если у вас есть настойчивое желание освоить микроконтроллер, тогда продолжаем.

Что такое программа

Какие задачи вы возлагаете на микроконтроллер, и как он будет их выполнять, определяется заложенной в него программой – программой которую для микроконтроллера составляете вы сами.

Программа (в переводе это слово означает – “предписание”) – предварительное описание предстоящих событий или действий.

К примеру, мы хотим, чтобы микроконтроллер помигал светодиодом. Довольно простая задача, но тем не менее, для того, чтобы микроконтроллер выполнил ее, мы, предварительно, должны шаг за шагом описать все действия микроконтроллера — написать программу , которую он должен выполнить для получения нужного нам результата – мигающий светодиод.
Что-то вроде такого:
♦ Зажечь светодиод:
— настроить вывод микроконтроллера,к которому подключен светодиод, для работы на вывод информации
— подать на этот вывод логический уровень, который позволит зажечь светодиод
♦ Подождать некоторое время:
— перейти к подпрограмме формирующей паузу (которую тоже нужно “прописать”)
— по выполнению подпрограммы паузы вернуться в основную программу
♦ Погасить светодиод:
— подать на вывод микроконтроллера логический уровень, гасящий светодиод
и так далее.

С термином Программа неразрывно связан другой термин – Алгоритм .

Что такое алгоритм

Алгоритм – набор инструкций, описывающих порядок действия для достижения нужного результата.

Если в программе мы подробнейшим образом прописываем все действия микроконтроллера, то в алгоритме , — мы определяем порядок действий микроконтроллера, на основе которых мы потом создадим программу. По аналогии с вышеприведенном примером:
♦ Зажечь светодиод
♦ Подождать некоторое время
♦ Погасить светодиод
и так далее.
Таким образом, алгоритм – это предшественник программы . И чем тщательно и продумано будет создан алгоритм, тем проще будет создавать программу.

Язык программирования

К сожалению, если любимой собачке мы можем подавать команды на человеческом языке, то общение с микроконтроллером должно происходить на языке, который понятен ему — языке микроконтроллерных команд.

Команды для микроконтроллера имеют вид набора единичек и нулей, типа:
00110101 011000100
так называемые – коды команд , а коды команд – это язык который понимает микроконтроллер. А для того, чтобы перевести наш язык общения на язык микроконтроллера – в эти самые наборы нулей и единичек, существуют специальные программы.
Эти программы позволяют описать порядок работы для микроконтроллера на более-менее понятном для нас языке, а затем перевести этот порядок на язык понятный микроконтроллеру, в результате чего получается так называемый машинный код – последовательность команд и инструкций (те самые нули и единички) которые только и понимает микроконтроллер. Текст программы, написанный программистом, называется исходным кодом . Перевод программы с языка программирования (исходного кода) на язык микроконтроллера (машинный код) производится трансляторами . Транслятор превращает текст программы в машинные коды, которые потом записываются в память микроконтроллера.
В таких программах порядок работы микроконтроллера описывается специальным языком – языком программирования.

Язык программирования – это способ передачи команд, инструкций, чёткого руководства к действию для микроконтроллера.

Из множества языков программирования можно выделить два типа :
языки программирования низкого уровня
языки программирования высокого уровня
Чем они отличаются. А отличаются они своей близостью к микроконтроллеру.

На заре зарождения микропроцессорной техники, программы писали в машинных кодах, то есть весь алгоритм работы последовательно прописывали в виде нулей и единичек. Вот так, примерно, могла выглядеть программа:
01010010
01000110
10010011
Трудно, даже профессионалу, разобраться в такой комбинаций из двух цифр. Для облегчения своей жизни, программисты стали создавать первые языки программирования . Так вот, чем ближе язык программирования к такому набору нулей и единиц тем больше он “низкого уровня”, а чем дальше от них – тем больше “высокого уровня”.

Самые распространенные языки программирования для микроконтроллеров:
— язык низкого уровня – Ассемблер
— язык высокого уровня – С (Си)
Давайте посмотрим на примере их различия (эти примеры абстрактные).
Допустим нам надо сложить два числа: 25 и 35.
В машинных кодах эта команда может выглядеть так:
00000101 1101001
На языке низкого уровня:
ADD Rd, Rr
На языке высокого уровня:
25+35
Различие языков низкого и высокого уровня видны невооруженным глазом.
Но давайте копнемся в этих примерах поглубже. Пример машинного кода разбирать не будем, так как он идентичен примеру на Ассемблере. По своей сути, Ассемблерные команды это те же машинные коды (команды) которым просто, чтобы не заблудиться в нулях и единицах, присвоены буквенные аббревиатуры. Ассемблерной командой ADD Rd, Rr мы ставим микроконтроллеру задачу сложить два числа, которые находятся (а для этого мы должны их туда предварительно записать) – первое в Rd, второе в Rr, а результат сложения поместить в Rd. Как видите мы ставим очень конкретную задачу микроконтроллеру: где взять, что с этим сделать и куда поместить результат. В этом случае мы работаем напрямую с микроконтроллером.
Команда на языке высокого уровня: 25+35, привычная для нас математическая запись, радующая наш глаз. Но в этом случае мы не работаем напрямую с микроконтроллером, мы просто ставим ему задачу сложить два числа. Результат и последовательность действий в данном случае будет тот-же, что и при выполнении ассемблерной команды: сначала эти два числа будут куда-то записаны, затем сложены а результат куда-то помещен.
И вот тут кроется главное отличие языков высокого уровня и низкого уровня. Если в Ассемблере мы контролируем весь процесс (хотим мы того, или нет): мы знаем где записаны эти два числа, и мы знаем где будет находиться результат, то в языке высокого уровня мы процесс не контролируем. Программа сама решает куда предварительно записать числа и куда поместить результат. В большинстве случаев нам это и не надо знать, ведь для нас главное итог – число 60 на выходе. Как результат, программы на языках высокого уровня более читаемы (спорный вопрос), приятны для глаза (спорный вопрос) и меньше по размеру – ведь нам не приходится “лезть во все дыры” и расписывать каждый шаг микроконтроллера, программа это делает потом за нас, когда компилирует ее – переводит в машинные коды. Но тут есть и минус. Два одинаковых алгоритма написанных на Ассемблере и на Си, после преобразования их в машинные коды будут иметь разный размер: программа написанная на Ассемблере будет на 20-40% короче программы написанной на Си – черт его знает, каким путем идет Си для достижения нужного нам результата. И бывают случаи, когда нет доверия к языку высокого уровня и в программе на Си делают вставки кода, написанные на Ассемблере.

Продвинутые программисты, как правило, знают несколько языков программирования, творчески соединяя их возможности и преимущества в одной программе. Ну а нам, любителям, надо знать хотя бы один язык (для начала), и начинать надо (а я в этом твердо уверен)с языка низкого уровня – Ассемблера.

Декабрь 2015 г.

1. Преимущества предлагаемого способа

Схемы устройств на микроконтроллерах (МК) обычно отличаются сочетанием двух трудносовместимых качеств: максимальной простотой и высокой функциональностью. К тому же функциональность может в дальнейшем меняться и расширяться без внесения каких-либо изменений в схему - путём лишь замены программы (перепрошивкой). Эти особенности объясняются тем, что создатели современных МК постарались разместить на одном кристалле всё, что только может потребоваться разработчику электронного устройства - по крайней мере настолько, насколько это возможно. В результате произошло смещение акцента со схемотехнического и монтажного на программный. С использованием МК теперь меньше приходится "нагружать" схему деталями, между компонентами становится меньше соединений. Это, конечно, делает схему более привлекательной для её повторения как опытными, так и начинающими электронщиками. Но, как обычно, за всё приходится платить. Здесь тоже не обошлось без своих сложностей. Если купить новый МК, установить его в правильно собранную из исправных деталей схему и подать питание, то ничего не получится - устройство не будет работать. Микроконтроллеру нужна программа.

Казалось бы с этим тоже всё просто - в интернете можно встретить множество схем с бесплатными прошивками. Но тут возникает одна загвоздка: прошивку необходимо как-то "залить" в микроконтроллер. Для того, кто никогда этим раньше не занимался, такая задача зачастую становится проблемой и главным отталкивающим фактором, нередко заставляющим отказаться от прелестей использования МК и поискать схемы на "рассыпухе" и жесткой логике. А ведь всё не так уж сложно, как может показаться на первый взгляд.

Проанализировав публикации в интернете, можно заметить, что данная проблема решается чаще всего одним из двух путей: покупкой готового программатора или изготовлением самодельного. При этом публикуемые схемы самодельных программаторов очень часто неоправданно сложны - гораздо сложнее, чем это действительно необходимо. Конечно, если предполагается каждый день прошивать МК, лучше иметь "крутой" программатор. Но если надобность в такой процедуре возникает нечасто, от случая к случаю, то можно вообще обойтись без программатора. Нет, конечно, речь идет не о том, чтобы научиться делать это силой мысли. Имеется в виду, что понимая, как происходит взаимодействие программатора с микроконтроллером при записи и считывании информации в режиме его программирования, мы можем обойтись подручными средствами более широкого назначения. Эти средства должны будут заменить как программную, так и аппаратную части программатора. Аппаратная часть должна обеспечить физическое соединение с микросхемой МК, возможность подавать логические уровни на его входы и считывать данные с его выходов. Программная часть должна обеспечить работу алгоритма, управляющего всеми необходимыми процессами. Отметим также, что качество записи информации в МК не зависит от того, насколько "крутой" у вас программатор. Такого понятия, как "лучше записалось" или "хуже" не существует. Есть только два варианта: "записалось" и "не записалось". Это объясняется тем, что непосредственно процессом записи внутри кристалла руководит сам МК. Нужно лишь обеспечить ему качественное питание (отсутствие помех и пульсаций) и правильно организовать интерфейс. Если по результатам контрольного считывания ошибок не выявлено, то все в порядке - можно использовать контроллер по назначению.

Для того, чтобы, не имея программатора, записать в МК программу, нам потребуется преобразователь порта USB-RS232TTL и , а также . Конвертер USB-RS232TTL позволяет при помощи порта USB создать COM-порт, отличающийся от "настоящего" лишь тем, что на его входах и выходах используются логические уровни TTL, то есть напряжение в интервале от 0 до 5 вольт (подробнее можно почитать в статье " "). Такой конвертер в любом случае полезно иметь в "хозяйстве", так что если у вас его еще нет, непременно стоит приобрести. Что касается логических уровней, то в нашем случае TTL - это даже преимущество перед обычным COM-портом, потому что входы и выходы такого порта можно напрямую подключать к любому микроконтроллеру, питающемуся от напряжения 5 В, в том числе ATtiny и ATmega. Но не пытайтесь использовать обычный COM-порт - там используются напряжения в интервале от -12 до +12 В (либо -15...+15В). Непосредственное соединение с микроконтроллером в этом случае недопустимо!!!

Идея создания скрипта для программы "Перпетуум М", реализующего функции программатора, возникла после ознакомления с рядом публикаций в интернете, предлагающих те или иные решения по прошивке МК. В каждом случае обнаруживались серьезные недостатки или чрезмерные сложности. Часто попадались схемы программаторов, содержащие в себе микроконтроллер и при этом вполне серьезно давались советы типа: "... а чтобы запрограммировать микроконтроллер для этого программатора нам потребуется... правильно - другой программатор!". Далее предлагалось сходить к другу, поискать платную услугу и т.п. Качество программного обеспечения, распространяемого в сети для этих целей, также не впечатлило - замечено множество проблем как с функциональностью, так и с "мутностью" пользовательского интерфейса. Зачастую много времени нужно потратить, чтобы понять, как использовать программу - ее необходимо изучать даже ради осуществления простейших действий. Иная программа может долго и усердно что-то делать, но о том, что ничего в МК не записывается, пользователь узнает только после полного завершения всей прошивки и последующего контрольного считывания. Встречается и такая проблема: пользователь пытается выбрать из списка поддерживаемых кристаллов свой МК, а его в списке нет. В этом случае воспользоваться программой не удастся - внесение в список недостающих МК, как правило, не предусмотрено. Кроме того ручной выбор контроллера из списка выглядит странно, если учесть, что программатор во многих случаях может сам определить тип МК. Все это сказано не для того, чтобы облить грязью существующие продукты, а для того, чтобы объяснить причину появления скрипта к программе "Перпетуум М", описываемого в данной статье. Проблема действительно существует, и она касается в первую очередь новичков, которым не всегда удается преодолеть данную "стену", чтобы сделать свой первый шаг в мир микроконтроллеров. В предлагаемом скрипте учтены недостатки, обнаруженные в других программах. Реализована максимальная "прозрачность" работы алгоритма, предельно простой интерфейс пользователя, не требующий изучения и не оставляющий шанса запутаться и "не туда нажать". При отсутствии нужного МК среди поддерживаемых есть возможность самостоятельно добавить его описание, взяв нужные данные из документации, скачанной с сайта разработчика МК. И, самое главное - скрипт открыт для изучения и модификации. Каждый желающий может, открыв в текстовом редакторе, изучать и править его на свое усмотрение, изменяя на свой вкус существующие функции и добавляя недостающие.

Первая версия скрипта была создана в июне 2015 года. В этой версии реализована только поддержка Atmel"овских МК серий ATtiny и ATmega с функциями записи/чтения флэш-памяти, с настройкой конфигурационных бит, с автоматическим определением типа контроллера. Запись и чтение EEPROM не реализованы. Были планы дополнить функциональность скрипта: добавить запись и чтение EEPROM, реализовать поддержку PIC-контроллеров и т.д. По этой причине скрипт до сих пор не был опубликован. Но из-за нехватки времени осуществление задуманного затянулось, и, чтобы лучшее не становилось врагом хорошего, решено опубликовать имеющуюся версию. Если уже реализованных функций окажется недостаточно, прошу не огорчаться. В этом случае вы можете попробовать самостоятельно добавить нужную функцию. Не стану скрывать: идея создания данного скрипта изначально несет в себе еще и образовательный смысл. Разобравшись в алгоритме и добавив к нему что-то свое, вы сможете глубже понять работу МК в режиме программирования, чтобы в будущем не оказаться в положении девушки перед сломавшимся автомоблем, задумчиво разглядывающей его внутренности и не понимающей, почему "не едет".

2. Интерфейс МК в режиме программирования

Существует несколько различных способов перевести контроллер в режим программирования и работать с ним в этом режиме. Самым простым в реализации для контроллеров серий ATtiny и ATmega является, пожалуй, SPI. Им и воспользуемся.

Но, прежде чем приступить к рассмотрению сигналов, необходимых для формирования SPI, сделаем ряд оговорок. Микроконтроллер имеет конфигурационные биты. Это что-то вроде тумблеров, переключение которых позволяет менять некоторые свойства микросхемы в соответствии с нуждами проекта. Физически это ячейки энергонезависимой памяти, вроде тех, в которые записывается программа. Разница в том, что их очень мало (до трех байт для ATmega), и они не входят в адресное пространство какой-либо памяти. Запись и чтение конфигурационных данных выполняется отдельными командами режима программирования МК. Сейчас важно отметить, что некоторые конфигурационные биты влияют на саму возможность использования SPI. При некоторых их значениях может оказаться, что SPI нельзя будет использовать. Если вам попадется такой микроконтроллер, то метод, предлагаемый в данной статье, не поможет. В этом случае придется либо изменить настройки конфигурационных бит в программаторе, который поддерживает иной режим программирования, либо использовать другой микроконтроллер. Но данная проблема касается только бывших в употреблении МК, либо тех, с которыми уже кто-то неудачно "поигрался". Дело в том, что новые МК поставляются с настройками конфигурационных бит, не препятствующими использованию SPI. Это подтверждается и результатами испытаний скрипта-программатора для программы "Перпетуум М", во время которых были успешно прошиты четыре разных МК (ATmega8, ATmega128, ATtiny13, ATtiny44). Все они были новые. Начальная настройка конфигурационных бит соответствовала документации и не мешала использованию SPI.

Учитывая сказанное выше, следует обращать внимание на следующие биты. Бит SPIEN в явном виде разрешает или запрещает использование SPI, следовательно в нашем случае его значение должно быть разрешающим. Бит RSTDISBL способен превратить один из выводов микросхемы (заранее предопределенный) во вход сигнала "сброс", либо не превратить (в зависимости от записанного в этот бит значения). В нашем случае вход "сброс" необходим (при его отсутствии не получится перевести МК в режим программирования через SPI). Есть еще биты группы CKSEL, задающие источник тактового сигнала. Они не препятствуют использованию SPI, но их тоже необходимо иметь в виду, потому что при полном отсутствии тактовых импульсов, либо при их частоте ниже допустимой для заданной скорости SPI, также ничего хорошего не получится. Обычно у новых МК, имеющих внутренний RC-генератор, биты группы CKSEL настроены на его использование. Нас это вполне устраивает - тактирование обеспечено без каких-либо дополнительных усилий с нашей стороны. Ни кварцевый резонатор припаивать, ни внешний генератор подключать не нужно. Если же указанные биты содержат иную настройку, придется позаботится о тактировании в соответствии с настройкой. В этом случае может потребоваться подключение к МК кварцевого резонатора или внешнего тактового генератора. Но в рамках данной статьи мы не будем рассматривать, как это делается. Примеры подключения МК для программирования, содержащиеся в данной статье, рассчитаны на самый простой случай.

Рис. 1. Обмен данными по SPI в режиме программирования

Теперь обратимся к рисунку 1, взятому из документации на МК ATmega128A. На нем показан процесс передачи одного байта в МК и одновременного приема одного байта из МК. Оба эти процесса, как видим, используют одни и те же тактовые импульсы, поступающие от программатора в микроконтроллер на его вход SCK - один из выводов микросхемы, для которого в режиме программирования по SPI отведена такая роль. Еще две сигнальные линии обеспечивают прием и передачу данных по одному биту за такт. Через вход MOSI данные поступают в микроконтроллер, а с выхода MISO снимаются считываемые данные. Обратите внимание на две пунктирные линии, проведенные от SCK к MISO и MOSI. Они показывают, в какой момент микроконтроллер "проглатывает" выставленный на входе MOSI бит данных, и в какой момент сам выставляет на выход MISO свой бит данных. Все достаточно просто. Но чтобы ввести МК в режим программирования нам еще потребуется сигнал RESET. Не забудем также про общий провод GND и питание VCC. В общей сложности выходит, что к микроконтроллеру для его прошивки по SPI нужно подключить всего 6 проводков. Ниже разберем это подробнее, а пока добавим, что обмен данными с МК в режиме программирования по SPI выполняется пакетами по 4 байта. Первый байт каждого пакета в основном полностью отводится под кодирование команды. Второй байт в зависимости от первого может быть продолжением кода команды, либо частью адреса, а может иметь произвольное значение. Третий байт используется в основном для передачи адресов, но во многих командах может иметь произвольное значение. Четвертый байт обычно передает данные, либо имеет произвольное значение. Одновременно с передачей четвертого байта в некоторых командах принимаются данные, поступающие из МК. Подробности по каждой команде можно найти в документации на контроллер в таблице под названием "SPI Serial Programming Instruction Set". Пока отметим лишь, что весь обмен с контроллером построен из последовательности 32-битных пакетов, в каждом из которых передается не более одного байта полезной информации. Это не очень оптимально, но в целом работает неплохо.

3. Подключение МК для программирования

Чтобы обеспечить подачу на входы микроконтроллера всех необходимых сигналов для организации интерфейса SPI и чтение данных с его выхода MISO, не обязательно создавать программатор. Это легко осуществить при помощи самого обыкновенного конвертера USB-RS232TTL.

В интернете часто можно встретить информацию о том, что такие конвертеры неполноценны, что с ними ничего серьезного сделать нельзя. Но в отношении большинства моделей конвертеров такое мнение ошибочно. Да, существуют в продаже конвертеры, у которых доступны не все входы и выходы по сравнению со стандартным COM-портом (например, только TXD и RXD), имеющие при этом неразборную конструкцию (микросхема залита пластмассой - невозможно добраться до ее выводов). Но такие и покупать не стоит. В некоторых случаях получить недостающие входы и выходы порта можно, подпаяв проводки непосредственно к микросхеме. Пример такого "усовершенствованного" конвертера показан на рисунке 2 (микросхема PL-2303 - подробнее о назначении ее выводов в статье " "). Это одна из самых дешевых моделей, но обладающая своими преимуществами при использовании в самодельных конструкциях. Широко распространены и полнофункциональные шнуры-переходники со стандартным девятиконтактным разъемом на конце, как у COM-порта. От обычного COM-порта они отличаются только уровнями TTL и несовместимостью с устаревшим программным обеспечением и некоторым старым оборудованием. Можно еще отметить, что шнуры на микросхеме CH34x на различных экстремальных тестах показывают себя гораздо более надежными и стабильными по сравнению с преобразователями на PL-2303. Впрочем, при обычном использовании разница не заметна.

При выборе конвертера USB-RS232TTL следует также обращать внимание на совместимость его драйвера с версией используемой операционной системы.

Рассмотрим подробнее принцип соединения микроконтроллера и конвертера USB-RS232TTL на примере четырех разных моделей МК: ATtiny13, ATtiny44, ATmega8 и ATmega128. На рисунке 3 показана общая схема такого соединения. Вас может удивить, что сигналы RS232 (RTS, TXD, DTR и CTS) используются не по назначению. Но не стоит об этом беспокоиться: программа "Перпетуум М" способна работать с ними напрямую - устанавливать значения на выходах и читать состояния входа. Во всяком случае широко распространенные конвертеры USB-RS232TTL на микросхемах CH34x и PL-2303 такую возможность обеспечивают - это проверено. С другими популярными конвертерами также проблем быть не должно, так как для доступа к порту используются стандартные функции Windows.

Резисторы, показанные на общей схеме, в принципе можно не устанавливать, но все-таки лучше установить. Каково их назначение? Используя ТТЛ"овские входы и выходы конвертера и пятивольтное питание микроконтроллера, мы тем самым избавляемся от необходимости согласования логических уровней - все и так вполне корректно. Значит, соединения могут быть непосредственными. Но во время экспериментов бывает всякое. Например по закону подлости отвертка может упасть как раз в то место, куда она никак не могла бы упасть, и замкнуть то, что ни в коем случае нельзя замыкать. В роли "отвертки", конечно, может оказаться все, что угодно. Резисторы в этом случае иногда уменьшают последствия. Еще одно их назначение состоит в устранении возможного конфликта выходов. Дело в том, что по окончании программирования микроконтроллер переходит в обычный режим работы, и может так получиться, что его вывод, соединенный с выходом конвертера (RTS, TXD или DTR) тоже становится выходом, согласно только что записанной в МК программе. В этом случае будет очень нехорошо, если два напрямую соединенных выхода будут "бороться" - пытаться установить разные логические уровни. В такой "борьбе" кто-то может и "проиграть", а нам этого не надо.

Номиналы трех резисторов выбраны на уровне 4,3 КОм. Это касается соединений выход конвертера - вход микроконтроллера. Точность резисторов роли не играет: можно уменьшить их сопротивление до 1 КОм или увеличить до 10 КОм (но во втором случае увеличивается риск помех при использовании длинных проводов на пути к МК). Что же касается соединения вход конвертера (CTS) - выход микроконтроллера (MISO), то здесь применен резистор сопротивлением 100 Ом. Это объясняется особенностями входа использованного конвертера. Во время испытаний был использован конвертер на микросхеме PL-2303, входы которой, судя по всему, подтянуты к плюсу питания относительно низким сопротивлением (порядка нескольких сот Ом). Чтобы "перебить подтяжку" пришлось поставить резистор со столь маленьким сопротивлением. Впрочем, можно его вообще не ставить. На конвертере это всегда вход. Выходом он стать не может, а значит, конфликта выходов не будет при любом развитии событий.

Если микросхема имеет отдельный вывод AVCC для питания аналогово-цифрового преобразователя (например, ATmega8 или ATmega128), его следует соединить с выводом общего питания VCC. Некоторые микросхемы имеют более одного вывода питания VCC или более одного GND. Например, ATmega128 имеет 3 вывода GND и 2 вывода VCC. В постоянной конструкции одноименные выводы лучше соединить между собой. В нашем же случае на время программирования можно задействовать по одному выводу VCC и GND.

А вот как выглядит подключение ATtiny13. На рисунке показано назначение выводов, используемых при программировании через SPI. Рядом на фото - как временное подключение выглядит в реальности.


Кто-то может сказать, что это несерьезно - соединения на проводках. Но мы же с вами люди здравомыслящие. Наша цель состоит в том, чтобы запрограммировать микроконтроллер, затратив на это минимум времени и прочих ресурсов, а не в том, чтобы перед кем-то покрасоваться. Качество при этом не страдает. Метод "на проводках" в данном случае вполне эффективен и оправдан. Прошивка контроллера - процедура разовая, поэтому нет смысла обвешивать ее "стразиками". Если же предполагается менять прошивку в дальнейшем, не извлекая контроллер из схемы (в готовом изделии), то это учитывается в монтаже при изготовлении устройства. Обычно для этой цели устанавливается разъем (RESET, SCK, MOSI, MISO, GND), а МК может быть прошит даже после установки на плату. Но это уже творческие изыски. Мы же рассматриваем самый простой случай.

Теперь перейдем к МК ATtiny44. Здесь все примерно так же. По рисунку и фото даже новичку не составит труда разобраться с подключением. Подобно ATtiny44 можно подключать МК ATtiny24 и ATtiny84 - назначение выводов у этой троицы совпадает.


Еще один пример временного подключения контроллера для его программирования - ATmega8. Здесь выводов побольше, но принцип тот же - несколько проводков, и вот уже контроллер готов к "заливке" в него информации. Лишний черный провод на фото, идущий от вывода 13, в программировании участия не принимает. Он предназначен для снятия с него звукового сигнала после выхода МК из режима программирования. Это связано с тем, что во время отладки скрипта для "Перпетуум М" в МК закачивалась программа музыкальной шкатулки.


Часто один контроллер выпускается в разных корпусах. При этом назначение выводов для каждого корпуса распределено по-своему. Если корпус вашего контроллера не похож на тот, что изображен на рисунке, уточните назначение выводов по технической документации, скачать которую можно с сайта разработчика МК.

Для полноты картины посмотрим подключение микросхемы МК с большим числом "ножек". Назначение лишнего черного провода на фото, идущего от вывода 15, точно такое же, как в случае с ATmega8.


Вероятно, вы уже убедились, что все достаточно просто. Кто умеет считать выводы у микросхем (от метки по кругу против часовой стрелки), тот разберется. И не забывайте про аккуратность. Микросхемы любят аккуратных и не прощают небрежного к себе отношения.

Прежде чем переходить к программной части, убедитесь, что драйвер конвертера USB-RS232TTL корректно установлен (проверьте диспетчер устройств Windows). Запомните или запишите номер виртуального COM-порта, появляющегося при подключении конвертера. Этот номер нужно будет вписать в текст скрипта, о котором читайте ниже.

4. Скрипт - программатор для "Перпетуум М"

С аппаратной частью "программатора" разобрались. Это уже полдела. Теперь осталось разобраться с программной частью. Ее роль будет выполнять программа "Перпетуум М" под управлением скрипта, в котором и реализованы все необходимые функции по взаимодействию с микроконтроллером.

Архив со скриптом следует распаковать в ту же папку, где находится программа perpetuum.exe. В этом случае при запуске файла perpetuum.exe на экран будет выводиться меню со списком установленных скриптов, среди которых будет строка "Программатор МК AVR" (она может быть единственной). Именно эта строка нам и потребуется.

Скрипт находится в папке PMS в файле "Программатор МК AVR.pms". Этот файл можно просматривать, изучать и править при необходимости в обычном текстовом редакторе вроде "Блокнота" Windows. Перед использованием скрипта скорее всего потребуется внести изменения в текст, связанные с настройкой порта. Для этого уточните в диспетчере устройств Windows имя используемого порта и, при необходимости, внесите соответствующую поправку в строку "ИмяПорта="COM4";" - вместо цифры 4 может стоять другая цифра. Также при использовании другой модели конвертера USB-RS232TTL может потребоваться изменение настроек инвертирования сигналов (строки скрипта, начинающиеся со слова "Высокий"). Проверить инвертирование сигналов конвертером USB-RS232TTL можно с помощью одного из примеров, содержащегося в инструкции к программе "Перпетуум М" (раздел функций для работы с портом).

Во вложенной папке MK_AVR находятся файлы с описаниями поддерживаемых контроллеров. Если нужного контроллера среди них не окажется, вы можете добавить нужный самостоятельно, действуя по аналогии. Возьмите за образец один из файлов, и при помощи текстового редактора введите необходимые данные, взяв их из документации на свой микроконтроллер. Главное - будьте внимательны, вводите данные без ошибок, иначе МК не запрограммируется, или запрограммируется неправильно. В исходной версии поддерживаются 6 микроконтроллеров: ATtiny13, ATtiny24, ATtiny44, ATtiny84, ATmega8 и ATmega128. В скрипте реализовано автоматическое распознавание подключенного контроллера - вручную указывать не нужно. При отсутствии считанного из МК идентификатора среди имеющихся описаний, выдается сообщение, что распознать контроллер не удалось.

В архиве со скриптом содержится также дополнительная информация. В папке "inc-файлы контроллеров AVR" находится очень полезная и обширная коллекция файлов описаний контроллеров. Эти файлы используются при написании собственных программ для МК. Еще четыре папки "MusicBox_..." содержат файлы с программой на Ассемблере и готовой к закачке в МК прошивкой отдельно для ATtiny13, ATtiny44, ATmega8 и ATmega128. Если вы уже подключили один из этих МК для программирования, как это предложено в данной статье, то можете прямо сейчас его прошить - получится музыкальная шкатулка. Об этом ниже.

При выборе в меню скриптов строчки "Программатор МК AVR", скрипт начинает исполняться. При этом он открывает порт, посылает в МК команду перехода в режим программирования, принимает подтверждение от МК об успешном переходе, запрашивает идентификатор МК и отыскивает описание данного МК по его идентификатору среди имеющихся файлов с описаниями. Если не находит нужного описания, выдает соответствеющее сообщение. Если же описание найдено, далее открывается главное меню программатора. Его скриншот вы можете видеть на рисунке 8. Далее разобраться не сложно - меню очень простое.

В первой версии скрипта некоторые функции полноценного программатора не реализованы. Например, нет возможности читать и писать в EEPROM. Но если вы откроете скрипт в текстовом редакторе, то увидите, что он имеет очень небольшой размер при том, что основное в нем уже реализовано. Это говорит о том, что добавить недостающие функции не так уж и сложно - язык очень гибкий, он позволяет в небольшой программе реализовать богатую функциональность. Но для большинства случаев хватит даже имеющихся функций.

Некоторые ограничения функциональности описаны непосредственно в тексте скрипта:
//реализована запись только с нулевого адреса (Extended Segment Address Record игнорируется, LOAD OFFSET - тоже)
//порядок и непрерывность следования записей в HEX-файле не проверяется
//контрольная сумма не проверяется
Это касается работы с HEX-файлом, из которого берется код прошивки для МК. Если этот файл не искажен, проверка контрольной суммы ни на что не повлияет. Если искажен - средствами скрипта это выявить не удастся. Остальные ограничения в большинстве случаев не помешают, но иметь в виду их все-таки нужно.

5. Музыкальная шкатулка - простая поделка для начинающих

Если у вас есть один из этих микроконтроллеров: ATtiny13, ATtiny44, ATmega8 или ATmega128, вы можете легко превратить его в музыкальную шкатулку или музыкальную открытку. Для этого достаточно записать в МК соответствующую прошивку - одну из тех четырех, которые размещены в папках "MusicBox_..." в одном архиве со скриптом. Коды прошивок хранятся в файлах с расширением ".hex". Использовать ATmega128 для такой поделки, конечно, "жирновато", как и ATmega8. Но это может быть полезно для тестирования или экспериментов, иначе говоря - в учебных целях. Тексты программ на Ассемблере также прилагаются. Программы создавались не с нуля - за основу была взята программа музыкальной шкатулки из книги А.В.Белова "Микроконтроллеры AVR в радиолюбительской практике". Исходная программа претерпела ряд существенных изменений:
1. адаптирована для каждого из четырех МК: ATtiny13, ATtiny44, ATmega8 и ATmega128
2. ликвидированы кнопки - к контроллеру вообще ничего не нужно подключать, кроме питания и звукоизлучателя (мелодии воспроизводятся одна за другой в бесконечном цикле)
3. длительность каждой ноты уменьшена на длительность паузы между нотами для устранения нарушения музыкального ритма
4. подключена восьмая мелодия, незадействованная в книжной версии
5. из субъективного: некоторые "улучшайзинги" для оптимизации и более легкого восприятия алгоритма

В некоторых мелодиях слышится фальшь и даже грубые ошибки, особенно в "Улыбке" - в середине. Коды мелодий взяты из книги (а точнее - скачаны с сайта автора книги вместе с исходным asm-файлом) и не подвергались изменениям. Судя по всему, в кодировке мелодий имеются ошибки. Но это не проблема - кто "дружит" с музыкой, без труда во всем разберется и исправит.

В ATtiny13 из-за отсутствия 16-битного счетчика для воспроизведения нот пришлось использовать 8-битный, что привело к некоторому снижению точности звучания нот. Но на слух это мало заметно.

Насчет конфигурационных бит. Их настройка должна соответствовать состоянию нового микроконтроллера. Если ваш МК ранее где-то использовался, нужно проверить состояние его конфигурационных бит, и, при необходимости, привести их в соответствие настройкам нового микроконтроллера. Узнать состояние конфигурационных бит нового микроконтроллера можно из документации на этот МК (раздел "Fuse Bits"). Исключение составляет ATmega128. У этого МК имеется бит M103C, который включает режим совместимости с более старым ATmega103. Активизация бита M103C сильно урезает возможности ATmega128, причем у нового МК этот бит активен. Нужно сбросить M103C в неактивное состояние. Для манипуляций с конфигурационными битами используйте соответствующий раздел меню скрипта-программатора.

Схему музыкальной шкатулки приводить нет смысла: в ней только микроконтроллер, питание и пьезозвукоизлучатель. Питание подается точно так же, как мы это проделали при программировании МК. Звукоизлучатель подключается между общим проводом (вывод GND контроллера) и одним из выводов МК, номер которого можно посмотреть в файле с ассемблерным кодом программы (*.asm). В начале текста программы для каждого МК в комментариях имеется строчка: "звуковой сигнал формируется на выводе ХХ". При завершении работы скрипта - программатора микроконтроллер выходит из режима программирования и переходит в обычный режим работы. Сразу же начинается воспроизведение мелодий. Подключив звукоизлучатель, можно это проверить. Оставлять звукоизлучатель подключенным во время программирования кристалла можно только в том случае, если звук снимается с вывода, не задействованного в SPI, иначе дополнительная емкость на выводе может помешать программированию.

Принципиальная схема программатора на LPT порт показана на рисунке. В качестве шинного формирователя используйте микросхему 74AC 244 или 74HC244 (К1564АП5), 74LS244 (К555АП5) либо 74ALS244 (К1533АП5).

Светодиод VD1 индицирует режим записи микроконтроллера,

светодиод VD2 - чтения,

светодиод VD3 - наличие питания схемы.

Напряжение, необходимое для питания схема берёт с разъёма ISP, т.е. от программируемого устройства. Эта схема является переработанной схемой программатора STK200/300 (добавлены светодиоды для удобства работы), поэтому она совместима со всеми программами программаторов на PC, работающих со схемой STK200/300. Для работы с этим программатором используйтепрограмму CVAVR

Программатор можно выполнить на печатной плате и поместить её в корпус разъёма LPT, как показано на рисунках:




Для работы с программатором удобно использовать удлинитель LPT порта, который несложно изготовить самому (к примеру, из кабеля Centronix для принтера), главное "не жалеть" проводников для земли (18-25 ноги разъёма) или купить. Кабель между программатором и программируемой микросхемой не должен превышать 20-30 см.

Теперь, когда мы уже ознакомлены с некоторыми возможностями и функциями микроконтроллеров, естественно, возникает логичный вопрос: что нужно для программирования микроконтроллеров? Какие необходимы программы и устройства, где их взять?


Для того чтобы микроконтроллер мог решать задачи и выполнять определенные функции, его нужно запрограммировать, т. е. записать в него программу или же код программы.

Структура и порядок написания программы

Первым делом, прежде чем приступить к написанию любой программы, а точнее кода программы, следует четко представлять, какие функции будет выполнять микроконтроллер. Поэтому сначала нужно определить конечную цель программы. Когда она определена и полностью понятна, тогда составляется алгоритм работы программы. Алгоритм – это последовательность выполнения команд. Применение алгоритмов позволяет более четко структурировать процесс написания кода, а при написании сложных программ часто позволяет сократить время, затрачиваемое на их разработку и отладку.

Следующим этапом после составления алгоритма является непосредственное написание кода программы. Программы для микроконтроллеров пишутся на языке Си или Ассемблере . Только Ассемблер больше относится к набору инструкций, нежели к языку программирования и является языком низкого уровня.


Мы будем писать программы на Си, который относится к языку высокого уровня. Программы на Си пишутся гораздо быстрее по сравнению с аналогичными на Ассемблере. К тому же все сложные программы пишутся преимущественно на Си.

Здесь мы не будем сравнивать преимущества и недостатки написания программ на Ассемблере и Си. Со временем, приобретя некоторый опыт в программировании МК, вы сами для себя сделаете полезные выводы.

Сам код программы можно писать в любом стандартном текстовом редакторе, например в Блокноте. Однако на практике пользуются более удобными редакторами, о которых будет сказано далее.

Компиляция программы

Написанный нами код на Си еще вовсе не понятен микроконтроллеру, поскольку МК понимает команды только в двоичной (или шестнадцатеричной) системе, которая представляет собой набор нулей и единиц. Поэтому Си-шный код нужно преобразовать в нули и единицы. Для этого применяется специальная программа, называемая компилятор , а сам процесс преобразования кода называется компиляция .

Для прошивки МК применяется устройство, называемое программатор . В зависимости от типа программатора вход его подключается к COM или USB порту, а выход к определенным выводам микроконтроллера.


Существует широкий выбор программаторов и отладочных плат, однако нас вполне устроит самый простой программатор , который в Китае стоит не более 3 $.


После того, как микроконтроллер прошит, выполняется отладка и тестирование программы на реальном устройстве или, как еще говорят, на «железе».

Теперь давайте подытожим этапы программирования микроконтроллеров.


При написании простых программ можно обойтись без второго пункта, т. е. без составления алгоритма на бумаге, его достаточно держать в голове.

Следует заметить, что отладку и тестирование программы также выполняют до прошивки МК.

Необходимый набор программ

Существует множество полезных и удобных программ для программирования МК. Они бывают как платные, так и бесплатные. Среди них можно выделить три основных:

1) Atmel Studio

2) CodeVisionAVR

3) WinAVR

Все эти программы относятся к IDE I ntegrated D evelopment E nvironment – интегрированная среда разработки . В них можно писать код, компилировать и отлаживать его.

Следует обратить внимание на Code Vision AVR. Эта IDE позволяет упростить и ускорить написание кода. Однако программа платная.

На начальном этапе программирования все программы лучше прописывать вручную, без каких-либо упрощений. Это поможет быстро приобрести необходимые навыки, а в дальнейшем хорошо понимать и редактировать под свои нужды коды, написанные кем-то другим. Поэтому я рекомендую использовать программу Atmel Studio. Во-первых, она абсолютно бесплатна и постоянно обновляется, а во-вторых она разработана компанией, изготавливающей микроконтроллеры на которых мы будем учиться программировать.

Прошивка и отладка программы

Прошивать микроконтроллеры мы будем с помощью дополнительной программы .

Если микроконтроллера в наличии нет, то его работу можно эмитировать с помощью программы . Она значительно упрощает процесс отладки программы даже при наличии МК, чтобы его часто не перепрошивать, ведь любой МК имеет конечное число перезаписей, хотя это число и достаточно большое.

При прошивке и отладке МК его удобно располагать на макетной плате, но это вовсе не обязательно. Поэтому для большего удобства пригодится и макетная плата. Существует большой выбор макетных плат, однако я вам рекомендую брать ту, которая имеет по возможности большее число отверстий. Когда мы начнем подключать семисегментные индикаторы, вы оцените преимущества «больших» макетных плат.

Еще один важный элемент, который нам пригодится – это техническая документация на МК, называемая datasheet . В общем, нужно скачать datasheet на микроконтроллер ATmega8 .

Киселев Роман, Май 2007 Статья обновлена 26 Мая 2014

Итак, что вообще такое микроконтроллер (далее МК)? Это, условно говоря, маленький компьютер, размещенный в одной интегральной микросхеме. У него есть процессор (арифметическо-логическое устройство, или АЛУ), flash-память, EEPROM-память, множество регистров, порты ввода-вывода, а также дополнительные «навороты», такие как таймеры, счетчики, компараторы, USARTы и т. п. Микроконтроллер после подачи питания загружается и начинает выполнять программу, записанную в его flash-памяти. При этом он может через порты ввода/вывода управлять самыми разнообразными внешними устройствами.

Что же это означает? Это значит, что в МК можно реализовать любую логическую схему, которая будет выполнять определенные функции. Это значит, что МК – микросхема, внутреннее содержимое которой, фактически, мы создаем сами. Что позволяет, купив несколько совершенно одинаковых МК, собрать на них совершенно разные схемы и устройства. Если вам захочется внести какие-либо изменения в работу электронного устройства, то не нужно будет использовать паяльник, достаточно будет лишь перепрограммировать МК. При этом не нужно даже вынимать его из вашего дивайса, если вы используете AVR, т. к. эти МК поддерживают внутрисхемное программирование. Таким образом, микроконтроллеры ликвидируют разрыв между программированием и электроникой.

AVR – это 8-битные микроконтроллеры, т. е. их АЛУ может за один такт выполнять простейшие операции только с 8-ми битными числами. Теперь пора поговорить о том, какой МК мы будем использовать. Я работаю с МК ATMega16. Он очень распространенный и приобрести его можно практически в любом магазине радиодеталей где-то за 100 руб. Если вы его не найдете – тогда можно купить любой другой МК серии MEGA, но в этом случае придется искать к нему документацию, т. к. одни и те же «ножки» разных МК могут выполнять разные функции, и, подключив, казалось бы, правильно все выводы, вы, может быть, получите рабочее устройство, а, может быть, лишь облако вонючего дыма. При покупке ATMega16 проверьте, чтобы он был в большом 40-ножечном DIP-корпусе, а также купите к нему панельку, в которую его можно будет вставить. Для работы с ним потребуются также дополнительные устройства: светодиоды, кнопки, разъемы и т. п..

ATMega16 обладает очень большим количеством самых разнообразных функций. Вот некоторые его характеристики:

  • Максимальная тактовая частота – 16 МГц (8 МГц для ATMega16L)
  • Большинство команд выполняются за один такт
  • 32 8-битных рабочих регистра
  • 4 полноценных 8-битных порта ввода/вывода
  • два 8-битных таймера/счетчика и один 16-битный
  • 10-разрядный аналогово-цифровой преобразователь (АЦП)
  • внутренний тактовый генератор на 1 МГц
  • аналоговый компаратор
  • интерфейсы SPI, I2C, TWI, RS-232, JTAG
  • внутрисхемное программирование и самопрограммирование
  • модуль широтно-импульсной модуляции (ШИМ)

Полные характеристики этого устройства, а также инструкции по их применению можно найти в справочнике (Datasheetе) к этому МК. Правда, он на английском языке. Если вы знаете английский, то обязательно скачайте этот Datasheet, в нем много полезного.

Приступим, наконец, к делу. Я рекомендую изготовить для микроконтроллера специальную макетно-отладочную плату, на которой можно будет без паяльника (или почти без него) собрать любую электрическую схему с микроконтроллером. Использование такой платы значительно облегчит работу с МК и ускорит процесс изучения его программирования. Выглядит это так:

Что для этого понадобится?

Во-первых, потребуется сама плата. Я купил уже готовую в магазине радиодеталей за 115 руб. Потом припаял к ней все необходимые детали. Получилась неимоверно удобная вещь, на которой можно за считанные минуты собрать какую-либо электрическую схему путем перетыкания шлейфов и установки микросхем и индикаторов.

Для соединения элементов схемы очень удобно использовать шлейфы, на концах которых установлены разъемы. Эти разъемы надеваются на «ножки», торчащие рядом с каждым портом МК. Микроконтроллер следует устанавливать в панельку, а не припаивать к плате, иначе его очень трудно будет вынуть в случае, если вы его случайно сожжете. Ниже приведена цоколевка МК ATMEGA16:

Поясним, какие ножки нас сейчас интересуют.

  • VCC – сюда подается питание (4,5 – 5,5 В) от стабилизированного источника
  • GND – земля
  • RESET – сброс (при низком уровне напряжения)
  • XTAL1, XTAL2 – сюда подключается кварцевый резонатор
  • PA, PB, PC, PD – порты ввода/вывода (A, B, C и D соответственно).

В качестве источника питания можно использовать все, что выдает 7-11 В постоянного тока. Для стабильной работы МК нужно стабилизированное питание. В качестве стабилизатора можно использовать микросхемы серии 7805. Это линейные интегральные стабилизаторы, на вход которых подают 7-11 В постоянного нестабилизированного тока, а на выходе получают 5 В стабилизированного. Перед 7805 и после него нужно поставить фильтрующие конденсаторы (электролитические для фильтрации помех низких частот и керамические для высоких). Если не удается найти стабилизатор, то можно в качестве источника питания использовать батарейку на 4,5 В. От нее МК нужно питать напрямую.

Ниже приведу схему подключения МК:

Давайте теперь разберемся, что здесь для чего.

BQ1 – это кварцевый резонатор, задающий рабочую частоту МК. Можно поставить любой до 16 МГц, но, поскольку мы планируем работать в будущем и с COM-портом, то рекомендую использовать резонаторы на следующие частоты: 14,7456 МГц, 11,0592 МГц, 7,3725 МГц, 3,6864 МГц или 1,8432 МГц (позже станет ясно, почему). Я использовал 11,0592 МГц. Понятное дело, что чем больше частота, тем выше и скорость работы устройства.

R1 – подтягивающий резистор, который поддерживает напряжение 5 В на входе RESET. Низкий уровень напряжения на этом входе означает сброс. После сброса МК загружается (10 – 15 мс) и начинает выполнять программу заново. Поскольку это высокоомный вход, то нельзя оставлять его «болтающимся в воздухе» - небольшая наводка на нем приведет к непредвиденному сбросу МК. Именно для этого и нужен R1. Для надежности рекомендую также установить конденсатор С6 (не более 20 мкФ).

SB1 – кнопка сброса.

Кварцевый резонатор и фильтрующий конденсатор C3 должны располагаться как можно ближе к МК (не далее 5-7 см), т. к. иначе могут возникать наводки в проводах, приводящие к сбоям в работе МК.

Синим прямоугольником на схеме обведен собственно программатор. Его удобно выполнить в виде провода, один конец которого втыкается в LPT порт, а другой – в некий разъем рядом с МК. Провод не должен быть чрезмерно длинным. Если возникнут проблемы с этим кабелем (обычно не возникают, но всякое бывает) то придется спаять адаптер Altera ByteBlaster. О том, как это сделать, написано в описании к программатору AVReal.

Теперь, когда разобрались с железом, пора перейти к программному обеспечению.

Для программирования AVR есть несколько сред разработки. Во-первых, это AVR Studio – официальная система программирования от Atmel. Она позволяет писать на ассемблере и отлаживать программы, написанные на ассемблере, С и С++. IAR – это коммерческая система программирования на C, С++ и ассемблере. WinAVR – компилятор с открытыми исходниками. AtmanAVR – система программирования для AVR с интерфейсом, почти «один в один» таким же, как у Visual C++ 6. AtmanAVR также позволяет отлаживать программы и содержит множество вспомогательных функций, облегчающих написание кода. Эта система программирования коммерческая, но, согласно лицензии, ее можно в течение месяца использовать «нахаляву».

Я предлагаю начать работу с IAR как с наиболее «прозрачной» средой разработки. В IAR проект целиком создается «ручками», соответственно, сделав несколько проектов, вы уже будете четко знать, что означает каждая строчка кода и что будет, если ее изменить. При работе же с AtmanAVR придется либо пользоваться предварительно созданным шаблоном, который очень громоздкий и трудный для понимания для человека, не имеющего опыта, либо иметь множество проблем с заголовочными файлами при сборке проекта «с нуля». Разобравшись с IAR, мы впоследствии рассмотрим другие компиляторы.

Итак, для начала раздобудьте IAR. Он очень распространен и его нахождение не должно быть проблемой. Скачав где-либо IAR 3.20, устанавливаем компилятор / рабочую среду, и запускаем его. После этого можно начинать работу.

Запустив IAR, выбираем file / new / workspace , выбираем путь к нашему проекту и создаем для него папку и даем имя, например, «Prog1». Теперь создаем проект: Project / Create new project… Назовем его также – «Prog1». Щелкаем правой кнопкой мыши на заголовке проекта в дереве проектов и выбираем «Options»

Здесь будем настраивать компилятор под конкретный МК. Во-первых, нужно выбрать на вкладке Target тип процессора ATMega16, на вкладке Library Configuration установить галочку Enable bit definitions in I/O-include files (чтобы можно было использовать в коде программы имена битов различных регистров МК), там же выбрать тип библиотеки С/ЕС++. В категории ICCAVR нужно на вкладке Language установить галочку Enable multibyte support, а на вкладке Optimization выключить оптимизацию (иначе она испортит нашу первую программу).

Далее выбираем категорию XLINK. Здесь нужно определить формат откомпилированного файла. Поскольку сейчас мы задаем опции для режима отладки (Debug), о чем написано в заголовке, то на выходе нужно получить отладочный файл. Позже мы его откроем в AVR Studio. Для этого нужно выбрать расширение.cof, а тип файла – ubrof 7.

Теперь нажимаем ОК, после чего меняем Debug на Release.

Снова заходим в Options, где все параметры, кроме XLINK, выставляем те же. В XLINK меняем расширение на.hex, а формат файла на intel-standart.

Вот и все. Теперь можно приступать к написанию первой программы. Создаем новый Source/text и набираем в нем следующий код:

#include "iom16.h" short unsigned int i; void main (void ) { DDRB = 255; PORTB = 0; while (1) { if (PORTB == 255) PORTB = 0; else PORTB++; for (i=0; i

Файл «iom16.h» находится в папке (C:\Program Files)\IAR Systems\Embedded Workbench 3.2\avr\inc . Если вы используете другой МК, например, ATMega64, то выбирайте файл «iom64.h». В этих заголовочных файлах хранится информация о МК: имена регистров, битов в регистрах, определены имена прерываний. Каждая отдельная «ножка» порта A, B, C или D может работать либо как вход, либо как выход. Это определяется регистрами Data Direction Register (DDR). 1 делает «ножку» выходом, 0 – входом. Таким образом, выставив, например, DDRA = 13, мы делаем выходами «ножки» PB0, PB2, PB3, остальные – входы, т.к. 13 в двоичном коде будет 00001101.

PORTB – это регистр, в котором определяется состояние «ножек» порта. Записав туда 0, мы выставляем на всех выходах напряжение 0 В. Далее идет бесконечный цикл. При программировании МК всегда делают бесконечный цикл, в котором МК выполняет какое-либо действие, пока его не сбросят или пока не произойдет прерывание. В этом цикле пишут как бы «фоновый код», который МК выполняет в самую последнюю очередь. Это может быть, например, вывод информации на дисплей. В нашем же случае увеличивается содержимое регистра PORTB до тех пор, пока он не заполнится. После этого все начинается сначала. Наконец, цикл for на десять тысяч тактов. Он нужен для формирования видимой задержки в переключении состояния порта В.



Теперь сохраняем этот файл в папке с проектом как Prog1.c, копируем в папку с проектом файл iom16.h, выбираем Project/Add Files и добавляем «iom16.h» и «Prog1.c». Выбираем Release, нажимаем F7, программа компилируется и должно появиться сообщение:


Total number of errors: 0
Total number of warnings: 0

Приведу фотографию своего программатора:

Скачиваем программатор AVReal. Копируем его (AVReal32.exe) в папку Release/exe, где должен лежать файл Prog1.hex. Подаем питание на МК, подключаем кабель-программатор. Открываем Far Manager (в нем наиболее удобно прошивать МК), заходим в эту папку, нажимаем Ctrl+O. Поскольку у нас совершенно новый МК, то набиваем

avreal32.exe +MEGA16 -o11.0592MHZ -p1 -fblev=0,jtagen=1,cksel=F,sut=1 –w

Не забудьте правильно указать частоту, если используете не 11059200 Гц! При этом в МК прошиваются т.н. fuses – регистры, управляющие его работой (использование внутреннего генератора, Jtag и т.п.). После этого он готов к приему первой программы. Программатору в качестве параметров передают используемый LPT-порт, частоту, имя файла и другие (все они перечислены в описании к AVReal). Набираем:

Avreal32.exe +Mega16 -o11.0592MHz -p1 -e -w -az -% Prog1.hex

В случае правильного подключения программатор сообщит об успешном программировании. Нет гарантии, что это получится с первого раза (при первом вызове программы). У меня самого бывает программируется со второго раза. Возможно, LPT-порт глючный или возникают наводки в кабеле. При возникновении проблем тщательно проверьте свой кабель. По своему опыту знаю, что 60% неисправностей связаны с отсутствием контакта в нужном месте, 20% - с наличием в ненужном и еще 15% - с ошибочной пайкой не того не к тому. Если ничего не получится, читайте описание к программатору, попробуйте собрать Byte Blaster.

Предположим, у вас все работает. Если теперь подключить к порту В МК восемь светодиодов (делайте это в выключенном состоянии МК, и желательно последовательно со светодиодами включить резисторы в 300-400 Ом) и подать питание, то произойдет маленькое чудо – по ним побежит «волна»!

© Киселев Роман
Май 2007

Похожие публикации