Какие существуют способы определения индуктивности. Измерение индуктивностей низкочастотных катушек

Наиболее простой и доступный для радиолюбителей способ измерения индуктивности низкочастотной катушки (дросселя низкой частоты, обмотки трансформатора со стальным сердечником и т. п.) заключается в следующем:

1) собирают схему, изображенную на рис. ; в качестве прибора, измеряющего напряжения на переменном резисторе R и катушке L х используют тестер или отдельный вольтметр переменного тока; максимальное значение сопротивления резистора мощностью рассеяния 0,25-1-0,5 Вт выбирают в пределах 100-30000 Ом (в зависимости от ожидаемой величины).

2.32. Измерение индуктивностей низкочастотных катушек

2) устанавливают с помощью автотрансформатора АТ напряжение на уровне 10 В и замечают показание U 1 вольтметра, то есть падение напряжения на исследуемой катушке;

3) переводят ползунок переключателя из положения 1-3 в положение 1-2 , присоединяя таким образом вольтметр параллельно резистору, и подбирают такое значение сопротивления R = R 2 , при котором падение напряжения на резисторе также равно U 1 .

4) вычисляют индуктивность катушки по формуле:

L" x = 0,00318 √ RR 2 Гн, (32)

где R 1 и R 2 - сопротивления резистора (Ом) при нахождении ползунка переключателя в положениях 1-3 и 1-2.

При отсутствии переменного резистора индуктивность катушки измеряют с помощью постоянного резистора. Схема и процесс измерения остаются прежними, формула же для подсчета L х - дополняется множителем U 1 /U 2 , то есть приобретает вид:

L"" x = 0,00318 R(U 1 /U 2) Гн, (33)

где R - сопротивление резистора, Ом,

U 1 и U 2 - показания вольтметра в положениях 1-3 и 1-2 ползунка переключателя.

В большинстве случаев индуктивные сопротивления обмоток намного превышают их активные сопротивления, поэтому приведенные выше формулы дают достаточно точные значения индуктивности.

Однако если число витков катушки мало, а сопротивление постоянному (или переменному) току велико (несколько десятков или сотен Ом), то L" x и L"" x вычисляют по другим, более точным формулам, а именно:

где R - сопротивление резистора при нахождении ползунка переключателя в положении 1-2; U - напряжение на последовательно соединенных R и L x ; U 2 - напряжение на резисторе равное напряжению U 1 на катушке L х ;

L x " = 0,00318 R 0 / tg α ,

где R - активное сопротивление обмотки;

α - угол, образованный стороной ВС треугольника ABC () и перпендикуляром, опущенным из точки В на продолжение стороны ЛС.

Рис. 2.40 . Треугольник напряжений, определяющий угол α

Тангенс угла α находят так. Откладывают на произвольной прямой MN () отрезок АС , пропорциональный напряжению U 2 на резисторе R . Затем проводят из точек А и С , как из центров, радиусами, пропорциональными напряжению U источника питания и напряжению U 1 на обмотке, две дуги. Соединяют точку В пересечения этих дуг с точкой С и опускают из точки В перпендикуляр BD на прямую MN . В заключение удлиняют высоту BD треугольника ABC до 100 мм (отрезок DK ) и проводят через точку К прямую KP , параллельную стороне ВС треугольника ABC . Если принять отрезок DK за единицу, то отсекаемый при этом на прямой MN отрезок PD и будет численно равен тангенсу угла α .

В тех случаях, когда сопротивление катушки постоянному току превышает ее индуктивное сопротивление, измерение L x проводят при другой, более высокой, частоте (например, 400 или 800 Гц). Форма кривой напряжения на выходе источника напряжения этой повышенной (звуковой) частоты должна быть синусоидальной.

Рис. 2.41. К вопросу нахождения тангенса угла α

При переходе к частоте, не равной 50 Гц, в формулы (32) ~ (35) вводят вместо коэффициента 0,00318 множитель 1/2π f источника питания схемы, где f - частота источника питания схемы.

Приставка для измерения индуктивности и ее применение в практике радиолюбителя

Предлагаемая приставка к частотомеру для определения расчетным путем индуктивности в диапазоне 0,2 мкГн... 4 Гн отличается от прототипов пониженным напряжением на измеряемой индуктивности (амплитуда не более 100 мВ), что снижает погрешность измерения для катушек на малогабаритных кольцевых и замкнутых магнитопроводах и дает возможность измерить с достаточной для практики точностью начальную магнитную проницаемость магнитопроводов. Кроме того, малое значение напряжения на контуре позволяет оценивать индуктивность катушки непосредственно в конструкции, без демонтажа.

Для многих начинающих радиолюбителей изготовление и оценка индуктивности катушек, дросселей, трансформаторов становится «камнем преткновения». Промышленные измерители малодоступны, самодельные законченные конструкции, как правило, сложны в повторении и при их настройке необходимы промышленные приборы. Поэтому особой популярностью пользуются простые приставки к частотомеру или осциллографу.

Описания и схемы подобных устройств были опубликованы в периодической литературе . Они просты в повторении, удобны в применении. Но сведения в статьях в части заявленных погрешностей и пределов измерения нередко приводят к ошибочным выводам и искаженным результатам. Так в указано, что приставка позволяет измерить индуктивность более 0,1 мкГн, а погрешность измерения зависит от подбора конденсатора, который в авторской конструкции имеет допустимое отклонение номинальной емкости не более ±1 %. И это при том, что на указанных на схеме транзисторах устойчивая генерация начинается с индуктивностью колебательного контура 0,15...0,2 мкГн (желающие легко могут проверить), а собственная индуктивность выводов от платы до разъема 30 мм оказывается равной 0,1...0,14 мкГн. В другой статье указывается погрешность до 1,5 % от верхнего предела (кстати, обратите внимание, нижний предел 0,5 мкГн с погрешностью 0,9 мкГн ― и это верно, иными словами измерение таких величин носит оценочный характер) как для маленьких, так и больших значений индуктивности, без учета собственной емкости катушек. А такая емкость может достигать соизмеримой с контурной величины и вносить дополнительную погрешность до 10…20 %.

В этой статье сделана попытка в какой-то мере восполнить отмеченный пробел и показать методы оценки погрешности измерений и способы применения действительно простой и полезной конструкции в лаборатории каждого радиолюбителя.

Предлагаемая приставка к частотомеру предназначена для оценки и измерения с достаточной для практики точностью индуктивности в диапазоне 0,2 мкГн... 4 Гн. Она отличается от прототипов пониженным напряжением на измеряемой индуктивности (амплитуда не более 100 мВ), что снижает погрешность измерения индуктивности на малогабаритных кольцевых и замкнутых магнитопроводах и дает возможность измерить начальную магнитную проницаемость магнитопроводов. Кроме того, малое значение напряжения на контуре позволяет оценивать индуктивность катушки непосредственно в конструкции, без демонтажа. Такую возможность оценят те, кому часто приходится заниматься ремонтом и настройкой аппаратуры при отсутствии схем и описаний.

Для работы с приставкой подходят любые самодельные или промышленные частотомеры, позволяющие измерять частоту до 3 МГц с точностью не менее 3х знаков. Если нет частотомера, подойдет и осцилограф. Точность измерения временных параметров у последних, как правило, порядка 7…10%, что и определит погрешность измерения индуктивности.

Ток, потребляемый приставкой при напряжении питания в интервале значений 5…15 В, не более 22 мА.

Принцип измерения индуктивности основан на известном соотношении, связующим параметры элементов колебательного контура с частотой его резонанса (формула Томсона)

При емкости контура Ск = 25330 пФ, формула упрощается

Где Т ― период в микросекундах.

В приставке (ее схема показана на рис. 1 ) используется генератор с эмиттерной связью в двухкаскадном усилителе, частота гармонических колебаний которого определяется емкостью конденсатора С1 и измеряемой индуктивностью Lx, подключаемой к пружинным зажимам Х1. Так как используется непосредственное соединение базы транзистора VT1 с коллектором VT2, то коэффициент петлевого усиления генератора высок, что обеспечивает устойчивую генерацию при изменении соотношения L/C в широком диапазоне. Коэффициент петлевого усиления пропорционален крутизне используемых транзисторов и может эффективно регулироваться изменением тока эмиттеров, для чего используется выпрямитель на диодах VD1, VD2 и управляющий транзистор VT3. Введение усилителя на транзисторе VT4 с КU= 8…9 позволило снизить амплитуду напряжения на контуре до уровня 80…90 мВ при выходной амплитуде 0,7 В. Эмиттерный повторитель обеспечивает работу на низкоомную нагрузку.

Устройство работоспособно при изменении напряжения питания в интервале 5...15 В, при этом вариации уровня выходного напряжения не превышают 20 %, а уход частоты F= 168,5 кГц (с катушкой высокой добротности, намотанной на сердечнике 50ВЧ при индуктивности L= 35 мкГн) не более 40 Гц!

В конструкции можно использовать в позициях VT1, VT2 транзисторы КТ361Б, КТ361Г, КТ 3107 с любым буквенным индексом, хотя несколько лучшие результаты достигаются с КТ326Б; в позиции VT3 ― кремниевые транзисторы структуры р-n-р, например, КТ209В, КТ361Б, КТ361Г, КТ3107 с любым буквенным индексом. Для буферного усилителя (VT4, VT5) пригодно большинство высокочастотных транзисторов. Параметр h21Э для транзистора VT4 ― более 150, для остальных не менее 50.

Диоды VD, VD2 ― любые высокочастотные кремнивые, например, серий КД503, КД509, КД521, КД522.

Резисторы ― МЛТ-0,125 или аналогичные. Конденсаторы, кроме С1, ― малогабаритные соотвественно керамические и электролитические, допустим разброс 1,5…2 раза.

Конденсатор С1 емкостью 25330 пФ определяет точность измерения, поэтому ее значение желательно подобрать с отклонением не более ±1 % (можно составить из нескольких термостабильных конденсаторов, например 10000+10000+5100 пФ из группы КСО, К31. Если нет возможности точно подобрать емкость, можно воспользоваться описанной ниже методикой.

В качестве разъема Х1 удобно использовать пружинящие зажимы для "акустических" кабелей. Разъем Х3 для соединения с частотомером ― СР–50-73Ф.

Детали монтируют на печатной плате (рис. 2 ) из односторонне фольгированного стеклотекстолита. Допустимо использовать навесной монтаж.В качестве корпуса для приставки можно применить любой подходящий по размерам коробок из любого материала. Разместить разъем Х1 необходимо так, чтобы обеспечить минимальную длину соединяющих его с платой проводников.

После проверки правильности монтажа следует подать питание напряжением 12 В, не подключая катушки к разъему Х1. Напряжение на эмиттере VT5 должно быть примерно равным половине питающего напряжения; если отклонение больше, потребуется подбор резистора R4. Ток потребления окажется близким к 20 мА.

Присоедините к разъему Х1 катушку Lx индуктивностью в пределах десятков―сотен микрогенри (точное значение некритично), а к разъему Х3 ― осциллограф или высокочастотный вольтметр. На выходе приставки должно быть переменное напряжение 0,45…0,5 В эфф (амплитудное значение 0,65…0,7 В). При необходимости его уровень можно установить в диапазоне 0,25…0,7 Вэфф подбором резистора R8.

Теперь можно приступить к калибровке приставки, подключив ее к частотомеру. Это можно сделать несколькими методами.

Если есть возможность измерить с точностью не хуже 1 % катушку на незамкнутом магнитопроводе с индуктивностью порядка десятков-сотен мкГ, то используя ее как образцовую, подберите емкость конденсаторов С1…С4 так, чтобы показания приставки совпали с требуемым значением.

Во втором случае понадобится один термостабильный эталонный конденсатор, емкость которого не менее 1000 пФ и известна с высокой точностью. В крайнем случае, если нет возможности точно измерить емкость, можно применить конденсаторы КСО, К31 с допуском ±2―5 %, смирившись с вероятным увеличением погрешности. Автор использовал конденсатор К31-17 с номинальной емкостью 5970 пФ ±0,5 %. Сначала по частотомеру фиксируем частоту F1 для катушки Lx без дополнительного внешнего конденсатора. Затем присоединяем параллельно катушке эталонный конденсатор Cэт и фиксируем частоту F2. Теперь можем определить реальную входную емкость собранной приставки и индуктивность катушки Lx по формулам

Вручную делать многократные пересчеты долго, поэтому автор пользуется удачной программой расчетов MIX10, разработанной А. Беспальчиком и любезно выложенной им на сайте СКР < > .

Чтобы можно было пользоваться приведенными в начале статьи упрощенными формулами, нужно подбором конденсаторов С1―С4 установить емкость Свх равной 25330±250 пФ. После окончательной корректировки емкости конденсатором С1 сделайте контрольный замер по приведенной выше методике, чтобы убедиться, что емкость С вх соответствует требуемой.

После этого приставка готова к работе. Попробуем оценить ее возможности; для этого проведем несколько опытов.

1 . При измерении малых значений индуктивности большую погрешность вносит собственная индуктивность приставки, состоящая из индуктивности проводников, соединяющих разъем Х1 с платой, и индуктивности монтажа. Попробуем ее измерить. Сначала замкнем контакты разъема Х1 прямым коротким проводником. Скрученные провода, идущие к разъему Х1 длиной 30 мм, и перемычка длиной 30 мм образуют один виток катушки. Если в генераторе транзисторы КТ326Б, колебания возникают только при ударном возбуждении контура путем периодичного включения питания; при этом частота F1 = 2,675...2,73 МГц, что соответствует индуктивности 0,14 мкГн (с транзисторами КТ3107Б генерация совсем не возникает). Теперь сделаем из провода диаметром 0,5 мм кольцо диаметром 3 с расчетной индуктивностью около 0,08 мкГн и подключим к Х1. Для генератора на транзисторах КТ326Б частотомер показал значение 2,310 МГц, что соответствует индуктивности 0,19 мкГн. Вариант на транзисторах КТ3107Б генерировал только при ударном возбуждении контура. Таким образом, собственная индуктивность приставки оказалась в пределах 0,1…0,14 мкГн.

Выводы: высокая точность измерений обеспечивается для индуктивности более 5 мкГн. При значениях в интервале 0,5... 5 мкГн надо учитывать собственную индуктивность 0,1…0,14 мкГн. При индуктивности менее 0,5 мкГн измерения носят оценочный характер. Уверенно регистрируемая минимальное значение индуктивности 0,2 мкГн.

2 . Измерение неизвестной индуктивности. Допустим, для нее частота F1= 0,16803 МГц, что по упрощенной формуле расчета индуктивности дает 35,42 мкГн.

При проверке с эталонным конденсатором частота F2 = 0.15129 МГц соответствует индуктивности 35,09 мкГн. Погрешность ― менее 1 %.

3 . Используя измеренную индуктивность в качестве образцовой, можно оценить входную емкость генератора. Емкость контура состоит из емкости конденсаторов С1―С4 и емкости Сген, состоящей из суммы емкости монтажа и емкости, вносимой транзисторами VT1, VT2, т. е. Свх= С1+С ген.

Чтобы определить величину С ген, отключаем конденсаторы С1―С4 и измеряем с используемой индуктивностью частоту F3. Теперь Сген можно рассчитать по формуле

В авторском варианте приставки с транзисторами КТ3107Б емкость Сген равна 85 пФ, а с транзисторами КТ326Б ― З9 пФ. По сравнению с требуемым значением 25330 пФ это меньше 0,4 %, что позволяет применять практически любые высокочастотные транзисторы без заметного влияния на точность измерения.

4 . Благодаря большой собственной емкости приставки, при измерении индуктивности до 0,1 Гн погрешность, вносимая собственной емкостью катушек, несущественна. Так при измерении индуктивности первичной обмотки выходного трансформатора от транзисторных приемников получилось значение L = 105,6 мГн. При дополнении колебательного контура эталонным конденсатором 5970 пФ получилось другое значение ― L=102 мГн, а собственная емкость обмотки Стр= Сизм– С1 = 25822 – 25330 = 392 пФ.

5 . Амплитуда на измерительном колебательном контуре величиной 70…80 мВ оказывается меньше порога открывания кремниевых p-n переходов, что позволяет во многих случаях измерять индуктивность катушек и трансформаторов прямо в схеме (естественно, обесточенной). Благодаря большой собственной емкости приставки (25330 пФ), если емкость в измеряемой цепи не более 1200 пФ, погрешность измерения не превысит 5 %.

Так при измерении индуктивности катушки контура ПЧ (емкость контура не более 1000 пФ) непосредственно на плате транзисторного приемника получено значение 92,1 мкГн. При измерении индуктивности катушки, выпаянной из платы, расчетное значение оказалось меньше ― 88,7мкГн (погрешность менее 4 %).

Для подключения к катушкам индуктивности, размещенных на платах, автор использует щупы с соединительными проводами длиной 30 см, скрученных с шагом одна скрутка на сантиметр. Ими вносится дополнительная индуктивность 0,5…0,6 мкГн ― это важно знать при измерении малых величин, для оценки ее достаточно замкнуть щупы между собой.

В заключение еще несколько полезных советов.

Определить магнитную проницаемость кольцевого магнитопровода без маркировки можно по следующей методике. Намотать 10 витков провода, равномерно распределив его по кольцу, и измерить индуктивность обмотки, а полученное значение индуктивности подставить в формулу:

L-индуктивность

W- кол-во витков

D,d,h – размер кольца в мм

В практических расчетах удобно пользоваться упрощенной формулой для расчета числа витков на кольцевых магнитопроводах

Значения коэффициента k для ряда широкораспространенных кольцевых магнитопроводов по данным В. Т. Полякова приведены в табл. 1 .

Таблица 1

Типоразмер

К18х8х4

К18х8х4

К18х8х4

К18х8х4

К18х8х4

К18х8х4

Магнитная проницаемость

3000

2000

1000

2000

1000

Для широко распространенных броневых магнитопроводов из карбонильного железа индуктивность удобнее рассчитывать в микрогенри, поэтому введем коэффициент m, и формула соответственно изменится.

Некоторые значения для распространенных броневых магнитопроводов приведены в табл. 2 .

Сердечник

СБ-9а

СБ-12а

СБ-23-17а

СБ23-11а

Составить подобную таблицу для имеющихся у вас кольцевых и броневых магнитопроводов, воспользовавшись предлагаемой приставкой, не составит большого труда.

ЛИТЕРАТУРА

1. Гайдук П. Частотомер измеряет индуктивность. ― Радиолюбитель, 1996, № 6, с. 30. 2. L-метр с линейной шкалой. ― Радио, 1984, № 5, с. 58, 61. 3. Поляков В. Катушки индуктивности. ― Радио, 2003, № 1, с. 53. 4. Поляков В. Радиолюбителям о технике прямого преобразования. ― М.: Патриот, 1990, с. 137, 138. 5. Полупроводниковые приемно-усилительные устройства: Справочник радиолюбителя. /Терещук Р. М. и др./ ― Киев: Наукова думка, 1987, с. 104.

С. Беленецкий, г. Луганск, Украина
Радио, 2005, №5, с.26-28

Приборы непосредственной оценки и сравнения

К измерительным приборам непосредственной оценки значения измеряемой емкости относятся микрофарадметры , действие которых базируется на зависимости тока или напряжения в цепи переменного тока от значения включенной в нее . Значение емкости определяют по шкале стрелочного измерителя.

Более широко для измерения и индуктивностей применяют уравновешенные мосты переменного тока , позволяющие получить малую погрешность измерения (до 1 %). Питание моста осуществляется от генераторов, работающих на фиксированной частоте 400-1000 Гц. В качестве индикаторов применяют выпрямительные или электронные милливольтметры, а также осциллографические индикаторы.

Измерение производят балансированием моста в результате попеременной подстройки двух его плеч. Отсчет показаний берется по лимбам рукояток тех плеч, которыми сбалансирован мост.

В качестве примера рассмотрим измерительные мосты, являющиеся основой измерителя индуктивности ЕЗ-3 (рис. 1) и измерителя емкости Е8-3 (рис. 2).

Рис. 1. Схема моста для измерения индуктивности

Рис. 2. Схема моста для измерения емкости с малыми (а) и большими (б) потерями

При балансе моста (рис. 1) индуктивность катушки и ее добротность определяют по формулам Lx = R1R2C2; Qx = wR1C1.

При балансе мостов (рис. 2) измеряемая емкость и сопротивление потерь определяют по формулам

Измерение емкости и индуктивности методом амперметра-вольметра

Для измерения малых емкостей (не более 0,01 - 0,05 мкФ) и высокочастотных катушек индуктивности в диапазоне их рабочих частот широко используют резонансные методы Резонансная схема обычно включает в себя генератор высокой частоты, индуктивно или через емкость связанный с измерительным LС-контуром. В качестве индикаторов резонанса применяют чувствительные высокочастотные приборы, реагирующие на ток или напряжение.

Методом амперметра-вольтметра измеряют сравнительно большие емкости и индуктивности при питании измерительной схемы от источника низкой частоты 50 - 1000 Гц.

Для измерения можно воспользоваться схемами рис. 3.

Рисунок 3. Схемы измерения больших (а) и малых (б) сопротивлений переменному току

По показаниям приборов полное сопротивление

где

из этих выражений можно определить

Когда можно пренебречь активными потерями в конденсаторе или катушке индуктивности, используют схему рис. 4. В этом случае


Рис. 4. Схемы измерения больших (а) и малых (б) сопротивлений методом амперметра - вольтметра

Измерение взаимной индуктивности двух катушек

Для многих любителей электроники актуальной является задача измерения емкостей конденсаторов и индуктивностей дросселей, поскольку, в отличие от резисторов, эти компоненты нередко бывают не промаркированы (особенно SMD). Между тем, имея генератор синусоидальных колебаний и осциллограф (приборы, которые должны быть в любой радиолюбительской лаборатории), эта задача довольно просто решается. Всё, что для этого нужно — это вспомнить начальный курс электротехники.

Рассмотрим простейшую схему — последовательно соединённые резистор и конденсатор. Пусть эта схема подключена к источнику синусоидальных колебаний. Запишем уравнения для напряжений на элементах нашей схемы в операторной форме: U R = I * R, U C = -j * I / ωC. Из этих уравнений очевидно, что амплитудные значения напряжений будут относится следующим образом: U R / U C = R * ωC (конечно, напряжения будут сдвинуты по фазе, но нас это в данном случае не волнует, нас волнуют
только амплитуды).

Думаю, что многие уже догадались к чему я клоню. Да-да, из последнего уравнения довольно просто вычисляется ёмкость:

C = U R /U C * 1/ωR или, с учетом того, что ω= 2πf, получим C = U R /U C * 1/2πfR ; (1)

Итак, алгоритм простой: подключаем последовательно с измеряемой ёмкостью резистор, подключаем к этой схеме генератор синусоидальных колебаний и осциллографом измеряем амплитуды напряжений на нашем конденсаторе и резисторе. Изменяя частоту, добиваемся, чтобы амплитуда напряжений на обоих элементах была примерно одинаковой (так измерение получится точнее). Далее, подставляя измеренные значения амплитуд в формулу (1), находим искомую ёмкость конденсатора.

Аналогично можно вывести формулу для подсчета индуктивности:

L = U L /U R * R/ω или, с учётом того, что ω= 2πf, получим L = U L /U R * R/2πf ; (2)

Таким образом, имея генератор синусоидальных колебаний и осциллограф, с помощью формул (1) и (2) оказывается довольно просто вычислить неизвестную ёмкость или индуктивность (благо резисторы практически всегда имеют маркировку).

Алгоритм действий следующий:

1) Собираем схему из последовательно соединённых резистора известного номинала и исследуемой ёмкости (индуктивности).

2) Подключаем эту схему к генератору синусоидальных колебаний и изменением частоты добиваемся того, чтобы амплитуды напряжений на обоих элементах схемы были примерно одинаковы.

3) По формуле (1) или (2) вычисляем номинал исследуемой ёмкости или индуктивности.

Несмотря на то, что наши элементы не идеальные, есть допуск на номинал резистора и всегда есть некоторые погрешности измерений, результат получается довольно точным (по крайней мере можно без труда идентифицировать ёмкость в стандартном ряду). Пусть у меня при измерении ёмкости получилась величина 1,036 нФ. Очевидно, что на исследуемом конденсаторе должна была быть нанесена маркировка 1 нФ.

Для того, чтобы вам легче было сориентироваться с номиналами резисторов, приведу некоторые примеры:

— для ёмкости 15 пФ в схеме с резистором 200 кОм амплитуды напряжений будут примерно равны на частоте 53 кГц;

— для ёмкости 1 нФ в схеме с резистором 10 кОм амплитуды напряжений будут примерно равны на частоте 15,9 кГц;

— для ёмкости 0,1 мкФ в схеме с резистором 680 Ом амплитуды напряжений будут примерно равны на частоте 2,34 кГц;

— для индуктивности 3 мкГн в схеме с резистором 120 Ом амплитуды напряжений будут примерно равны на частоте 6,3 МГц;

— для индуктивности 100 мкГн в схеме с резистором 120 Ом амплитуды напряжений будут примерно равны на частоте 190 кГц.

Таким образом, диапазон измеряемых емкостей и индуктивностей зависит только от диапазона частот, с которыми могут работать ваши генератор и осциллограф.

На основе этого метода можно изготовить прибор для автоматического измерения емкостей и индуктивностей.

Online-калькулятор для расчёта емкостей и индуктивностей :

(для правильности расчётов используйте в качестве десятичной точки точку, а не запятую)

1) Расчёт емкостей.

Содержимое:

"Индуктивность" означает либо взаимную индукцию, когда напряжение в электрической цепи возникает в результате изменения силы тока в другой цепи, либо самоиндукцию, при которой напряжение в цепи создается в результате изменения тока в этой же цепи. В обоих случаях индуктивность определяется отношением напряжения к силе тока, а единицей ее измерения является генри, равный 1 вольт в секунду, поделенный на ампер. Поскольку генри является большой величиной, индуктивность обычно измеряют в миллигенри (мГн, тысячная часть генри) или в микрогенри (мкГн, миллионная часть генри). Ниже описаны несколько методов измерения индуктивности катушки.

Шаги

1 Измерение индуктивности по зависимости напряжение-ток

  1. 1 Подключите к катушке индуктивности источник импульсного напряжения. При этом полный импульс должен составлять не более 50 процентов.
  2. 2 Включите монитор на регистрацию тока. Необходимо подключить в цепь токочувствительный резистор, или же использовать амперметр. И первый и второй следует соединить с осциллографом.
  3. 3 Зафиксируйте максимальное значение тока и время между двумя импульсами напряжения в сети. Сила тока измеряется в амперах, время - в микросекундах.
  4. 4 Умножьте напряжение, прикладываемое к цепи за один импульс, на длительность импульса. Например, если напряжение 50 вольт сообщается цепи в течение 5 микросекунд, в результате получим 50, умноженные на 5, т.е. 250 вольт в микросекунду.
  5. 5 Поделите произведение напряжения и длительности импульса на максимальную силу тока. Продолжая приведенный выше пример, если максимальный ток составил 5 ампер, индуктивность будет равна 250 вольт в секунду, поделенным на 5 ампер, или же 50 микрогенри.
    • Несмотря на простоту расчетов, этот метод измерения индуктивности требует более сложного оборудования по сравнению с остальными.

2 Измерение индуктивности с помощью сопротивления

  1. 1 Подключите последовательно к катушке индуктивности резистор, сопротивление которого известно. Величина сопротивления должна быть известна с точностью не ниже одного процента. При последовательном соединении электрический ток проходит как через катушку, так и через сопротивление; катушка и резистор должны иметь электрический контакт лишь в одной точке.
  2. 2 Пропустите ток через получившуюся цепь. Это делается с помощью функционального преобразователя, моделирующего реальные токи через катушку и резистор.
  3. 3 Зафиксируйте значения напряжения на входе и в месте соединения катушки с сопротивлением. Отрегулируйте ток так, чтобы напряжение в месте соединения составило половину входного напряжения цепи.
  4. 4 Определите частоту тока. Частота измеряется в килогерцах.
  5. 5 Вычислите индуктивность. В отличие от предыдущего метода, настоящий способ требует меньше оборудования, но более сложные вычисления. Индуктивность рассчитывается следующим образом:
    • Умножьте сопротивление резистора на корень квадратный из 3. К примеру, если резистор имеет сопротивление 100 ом, умножение на 1,73 (корень квадратный из 3 с точностью до второго знака после запятой) даст вам 173.
    • Поделите результат произведения на на частоту, умноженную на 2 и число пи. Если частота равна 20 килогерц, делить надо на 125,6; 173, поделенное на 125,6 даст вам, с точностью до второго знака после запятой, 1,38 миллигенри.
    • мГн = (R x 1,73) / (6,28 x (Гц / 1000))
    • Например: дано R = 100 и Гц = 20.000
    • мГн = (100 X 1,73) / (6,28 x (20.000 / 1000)
    • мГн = 173 / (6,28 x 20)
    • мГн = 173 / 125,6
    • мГн = 1,38

3 Измерение индуктивности с помощью конденсатора и сопротивления

  1. 1 Подключите катушку индуктивности параллельно с конденсатором, емкость которого известна. Параллельное подключение катушки и конденсатора приводит к созданию электрического колебательного контура. Используйте конденсатор, емкость которого известна с точностью не ниже 10 процентов.
  2. 2 Подключите получившийся контур последовательно к сопротивлению.
  3. 3 Пропустите через цепь ток. Это, как и в предыдущем случае, делается при помощи функционального преобразователя.
  4. 4 Подсоедините клеммы осциллографа к полученной цепи. После этого измените силу тока от минимальных до максимальных значений.
  5. 5 Найдите на осциллографе точку резонанса. В этой точке ток максимален.
  6. 6 Поделите 1 на произведение квадрата энергии на выходе и емкости конденсатора. Энергия 2 джоуля и емкость 1 фарад дадут в знаменателе 2 в квадрате, т.е. 4; 1, поделенное на 4 равно 0,25 генри, или 250 миллигенри.
  • При последовательном соединении индукторов их общая индуктивность равна сумме индуктивностей каждого из индукторов. Если же они соединены параллельно, обратная общая индуктивность (т.е. 1 поделить на L) равна сумме обратных индуктивностей.
  • Индукторы могут представлять собой проволочные катушки, кольцевые сердечники, или быть сделаны из тонкой фольги. Чем больше витков имеет катушка на единицу длины, тем выше ее суммарное поперечное сечение и, соответственно, индуктивность. Индуктивность длинных катушек ниже индуктивности более коротких.

Предупреждения

  • Индуктивность можно определить непосредственно с помощью измерителя индуктивности, но такие приборы не очень распространены, и большинство из них предназначены для измерения слабых токов.

Что вам понадобится

  • Функциональный преобразователь
  • Осциллограф с клеммами
  • Резистор или конденсатор
Похожие публикации