Мультивибратор на полевых транзисторах для трансформатора. Мультивибраторы на полевых транзисторах КР504НТ. Работа симметричного мультивибратора в «установившемся» режиме генерации

Начинающие радиолюбители, конечно, знают, что мультивибраторы (симметричные и несимметричные) выполняют на биполярных транзисторах. К сожалению, подобные мультивибраторы обладают недостатком - при работе с достаточно мощной нагрузкой, например, лампами накаливания, для полного открывания транзисторов необходимы большие базовые токи.Если же плечи мультивибратора переключаются с частотой 3...0,2 Гц, приходится устанавливать в частотозадающих цепях оксидные конденсаторы большой емкости, а значит, и больших габаритов. Не следует забывать и об относительно большом напряжении насыщения открытых транзисторов.В предлагаемом мультивибраторе (см. рисунок) использованы отечественные полевые n-канальные транзисторы с изолированным затвором и индуцированным каналом. Внутри корпуса между выводами затвора и истока стоит защитный стабилитрон, который значительно уменьшает вероятность выхода из строя транзистора при неумелом с ним обращении

Частота переключения транзисторов мультивибратора около 2 Гц, она задается конденсаторами и резисторами. Нагрузка транзисторов мультивибратора - лампы накаливания EL1, EL2.Резисторы, включенные между стоком и затвором транзисторов, обеспечивают мягкий запуск мультивибратора. К сожалению, они немного "затягивают" выключение транзисторов.Вместо ламп накаливания в цепь стока транзисторов допустимо включить светодиоды с ограничительными резисторами сопротивлением 360 Ом либо телефонный капсюль, например, ТК-47 (для этого варианта мультивибратор должен работать в области звуковых частот). В случае использования только одного капсюля, в цепь стока другого транзистора необходимо включить в качестве нагрузки резистор сопротивлением 100...200 Ом.Резисторы R1, R2 указанных на схеме номиналов можно составить из нескольких последовательно соединенных меньшего сопротивления. Если такого варианта нет, установите резисторы меньших номиналов, а конденсаторы - больших.Конденсаторы могут быть неполярные керамические либо пленочные, например, серий КМ-5, КМ-6, К73-17. Лампы накаливания применены от "мигающей" елочной гирлянды китайского производства на напряжение 6 В и ток 100 мА. Подойдут также малогабаритные лампы на напряжение 6 В и ток 60 либо 20 мА.Вместо транзисторов указанной серии, выдерживающих постоянный ток до 180 мА, допустимо применить рассчитанные на больший ток ключи серий КР1064КТ1, КР1014КТ1. В случае использования мультивибратора с более мощной нагрузкой, скажем, автомобильными лампами накаливания, понадобятся другие транзисторы, например КП744Г, допускающие ток стока до 9 А. Но при этом варианте нужно между затвором и истоком установить защитные стабилитроны на напряжение 8...10 В (катодом к затвору) - КС191Ж или аналогичные. При больших токах нагрузки транзисторы придется установить на теплоотводы.Налаживают мультивибратор подбором конденсаторов до получения желаемой частоты переключения транзисторов. Для работы устройства на звуковых частотах конденсаторы должны быть емкостью 300...600 пф. Если же оставить конденсаторы указанной на схеме емкости, придется подобрать резисторы меньшего сопротивления - вплоть до 47 кОм.Мультивибратор работоспособен при напряжении питания 3...10 В, разумеется, с соответствующей нагрузкой. Если его предполагается использовать в качестве какого-то узла в разрабатываемой конструкции, между проводами питания мультивибратора устанавливают блокировочный конденсатор емкостью 0,1...100 мкФ.



Вывод

Глава 11

Гибридный мультивибратор

При первом включении генератора в электросеть 220 В конденсатор С3 начинает заряжаться выпрямленным сетевым напряжением через лампу накаливания EL1, токоограничительные резисторы R4–R6 и эмиттерный переход транзистора VT1. Начальное время его зарядки составляет около 20 с. Это определяет задержку первого включения лампы, что в ряде случаев может оказаться полезным. Левое плечо мультивибратора – транзистор VT1 – питается постоянным напряжением около 12 В, которое формируется из выпрямленного диодным мостом VD5 сетевого, ограничивается стабилитроном VD1 и фильтруется оксидным конденсатором С1. Диод VD2 защищает эмиттерный переход транзистора от возможного пробоя высоким напряжением отрицательной полярности при перезарядке конденсатора С3.
Мощный высоковольтный полевой транзистор VT2 с изолированным затвором и n - каналом обогащенного типа периодически открывается в те моменты, когда закрыт VT1. В это время лампа EL1 светит полным накалом. Чтобы полевой транзистор открывался полностью, т.е. работал в ключевом режиме и не перегревался, напряжение затвор-исток должно быть не менее 10 В, но не более 15…20 В. В данном случае оно будет равно рабочему напряжению стабилитрона VD1. Диоды VD3, VD4 защищают затвор полевого транзистора от пробоя, например, при прикосновении отверткой или паяльником. Варистор R8 защищает полевой транзистор от повреждения при всплесках сетевого напряжения.Частота мигания лампы накаливания, в основном, зависит от параметров цепей С2, R3 и C3, R2, R4–R6.В конструкции можно использовать резисторы С1-4, С2-23, МЛТ и специальные высокомегаомные КИМ-Е, С3-14, С-36. Варистор R8 можно установить на напряжение 390…470 В. Подойдут, например, такие, как FNR307K391, FNR-20K391, FNR-14K431, FNR-05K471 или высоковольтные стабилитроны КС609В, КС903А, КС904АС. Настоятельно не рекомендую пренебрегать этим элементом, так как короткие импульсные всплески сетевого напряжения нередки и могут достигать амплитуды в 5 кВ.В крайнем случае можно воспользоваться варисторами типа СН1-1 на 560…680 В, которые использовались в устаревших отечественных телевизорах. Конденсатор С1 –К50-35 или импортный аналог. Остальные конденсаторы типов К73-17, К73-24, К73-39. При этом С3 должен быть на напряжение не менее 250 В. Стабилитрон VD1 нужно взять маломощный на рабочее напряжение 12…13 В, подойдут КС207В, КС212Ж, КС213Б, КС508А, Д814Д1, 1N4743A, TZMC-12. Перед установкой на плату стабилитрон следует проверить на исправность. Диоды VD2–VD4 любые из серий КД503, КД510, КД512, 1N4148. Выпрямительный мост VD5 – КЦ402А–В, КЦ405А–В, RC204–RC207, RS204–RS207 или четыре диода, например, КД257В. Транзистор VT1 работает в режиме микротока. Он должен иметь коэффициент передачи тока базы не менее 150. Подойдет любой из серий КТ3102, КТ342, КТ6111, SS9014, 2SC900, 2SC1222. Полевой транзистор при работе с нагрузкой мощностью до 150 Вт можно взять любой из серий КП707, КП777А–В, IRF840, IRF430, BUZ214. При монтаже полевой транзистор нужно обязательно защищать от пробоя, например, временно закоротив все его выводы. Так как из3за высоких сопротивлений резисторов он открывается и закрывается относительно медленно, то его крайне желательно установить на алюминиевый теплоотвод размерами не менее 55х30х4 мм. Проблему можно решить усложнением схемотехники устройства, но это уже будет противоречить концепции простоты предлагаемой конструкции. Для работы с лампами накаливания мощностью более 150 Вт можно использовать параллельное включение нескольких полевых транзисторов, но такой подход в данном случае можно признать нерациональным из-за ощутимого увеличения затрат на комплектующие.Чертеж возможного варианта печатной платы 55×105 мм показан на рис.2. Частоту мерцания лампы EL1 удобнее задавать изменением емкости конденсаторов С2, С3. При этом следует помнить, что конденсатор С3 сохраняет заряд длительное время после отключения питания. При настройке и эксплуатации устройства следует помнить, что все его элементы находятся под напряжением осветительной сети, и соблюдать необходимые меры осторожностиВ этой статье речь пойдет о простом генераторе световых импульсов, который работает с мощной высоковольтной нагрузкой, построенном по «классической” схеме двухтранзисторного симметричного мультивибратора, но на транзисторах разного типа – биполярном и полевом (рис.1).

Устройство, собранное по предлагаемой схеме, может найти применение для новогодней иллюминации, дискотек, в системах сигнализации или использоваться в качестве рабочего макета для различных экспериментов.При первом включении генератора в электросеть 220 В конденсатор С3 начинает заряжаться выпрямленным сетевым напряжением через лампу накаливания EL1, токоограничительные резисторы R4–R6 и эмиттерный переход транзистора VT1. Начальное время его зарядки составляет около 20 с. Это определяет задержку первого включения лампы, что в ряде случаев может оказаться полезным. Левое плечо мультивибратора – транзистор VT1 – питается постоянным напряжением около 12 В, которое формируется из выпрямленного диодным мостом VD5 сетевого, ограничивается стабилитроном VD1 и фильтруется оксидным конденсатором С1. Диод VD2 защищает эмиттерный переход транзистора от возможного пробоя высоким напряжением отрицательной полярности при перезарядке конденсатора С3.
Мощный высоковольтный полевой транзистор VT2 с изолированным затвором и n - каналом обогащенного типа периодически открывается в те моменты, когда закрыт VT1. В это время лампа EL1 светит полным накалом. Чтобы полевой транзистор открывался полностью, т.е. работал в ключевом режиме и не перегревался, напряжение затвор-исток должно быть не менее 10 В, но не более 15…20 В. В данном случае оно будет равно рабочему напряжению стабилитрона VD1. Диоды VD3, VD4 защищают затвор полевого транзистора от пробоя, например, при прикосновении отверткой или паяльником. Варистор R8 защищает полевой транзистор от повреждения при всплесках сетевого напряжения.Частота мигания лампы накаливания, в основном, зависит от параметров цепей С2, R3 и C3, R2, R4–R6.В конструкции можно использовать резисторы С1-4, С2-23, МЛТ и специальные высокомегаомные КИМ-Е, С3-14, С-36. Варистор R8 можно установить на напряжение 390…470 В. Подойдут, например, такие, как FNR307K391, FNR-20K391, FNR-14K431, FNR-05K471 или высоковольтные стабилитроны КС609В, КС903А, КС904АС. Настоятельно не рекомендую пренебрегать этим элементом, так как короткие импульсные всплески сетевого напряжения нередки и могут достигать амплитуды в 5 кВ.В крайнем случае можно воспользоваться варисторами типа СН1-1 на 560…680 В, которые использовались в устаревших отечественных телевизорах. Конденсатор С1 –К50-35 или импортный аналог. Остальные конденсаторы типов К73-17, К73-24, К73-39. При этом С3 должен быть на напряжение не менее 250 В. Стабилитрон VD1 нужно взять маломощный на рабочее напряжение 12…13 В, подойдут КС207В, КС212Ж, КС213Б, КС508А, Д814Д1, 1N4743A, TZMC-12. Перед установкой на плату стабилитрон следует проверить на исправность. Диоды VD2–VD4 любые из серий КД503, КД510, КД512, 1N4148. Выпрямительный мост VD5 – КЦ402А–В, КЦ405А–В, RC204–RC207, RS204–RS207 или четыре диода, например, КД257В. Транзистор VT1 работает в режиме микротока. Он должен иметь коэффициент передачи тока базы не менее 150. Подойдет любой из серий КТ3102, КТ342, КТ6111, SS9014, 2SC900, 2SC1222. Полевой транзистор при работе с нагрузкой мощностью до 150 Вт можно взять любой из серий КП707, КП777А–В, IRF840, IRF430, BUZ214. При монтаже полевой транзистор нужно обязательно защищать от пробоя, например, временно закоротив все его выводы. Так как из3за высоких сопротивлений резисторов он открывается и закрывается относительно медленно, то его крайне желательно установить на алюминиевый теплоотвод размерами не менее 55х30х4 мм. Проблему можно решить усложнением схемотехники устройства, но это уже будет противоречить концепции простоты предлагаемой конструкции. Для работы с лампами накаливания мощностью более 150 Вт можно использовать параллельное включение нескольких полевых транзисторов, но такой подход в данном случае можно признать нерациональным из-за ощутимого увеличения затрат на комплектующие.Чертеж возможного варианта печатной платы 55×105 мм показан на рис.2. Частоту мерцания лампы EL1 удобнее задавать изменением емкости конденсаторов С2, С3. При этом следует помнить, что конденсатор С3 сохраняет заряд длительное время после отключения питания. При настройке и эксплуатации устройства следует помнить, что все его элементы находятся под напряжением осветительной сети, и соблюдать необходимые меры осторожности

Мультивибратор на полевых транзисторах

Начинающие радиолюбители, конечно, знают, что мультивибраторы (симметричные и несимметричные) выполняют на биполярных транзисторах. К сожалению, подобные мультивибраторы обладают недостатком - при работе с достаточно мощной нагрузкой, например, лампами накаливания, для полного открывания транзисторов необходимы большие базовые токи.

Если же плечи мультивибратора переключаются с частотой 3...0,2 Гц, приходится устанавливать в частотозадающих цепях оксидные конденсаторы большой емкости, а значит, и больших габаритов. Не следует забывать и об относительно большом напряжении насыщения открытых транзисторов.

В предлагаемом мультивибраторе (см. рисунок) использованы отечественные полевые n-канальные транзисторы с изолированным затвором и индуцированным каналом. Внутри корпуса между выводами затвора и истока стоит защитный стабилитрон, который значительно уменьшает вероятность выхода из строя транзистора при неумелом с ним обращении.

Частота переключения транзисторов мультивибратора около 2 Гц, она задается конденсаторами и резисторами. Нагрузка транзисторов мультивибратора - лампы накаливания EL1, EL2.

Резисторы, включенные между стоком и затвором транзисторов, обеспечивают мягкий запуск мультивибратора. К сожалению, они немного "затягивают" выключение транзисторов.

Вместо ламп накаливания в цепь стока транзисторов допустимо включить светодиоды с ограничительными резисторами сопротивлением 360 Ом либо телефонный капсюль, например, ТК-47 (для этого варианта мультивибратор должен работать в области звуковых частот). В случае использования только одного капсюля, в цепь стока другого транзистора необходимо включить в качестве нагрузки резистор сопротивлением 100...200 Ом.

Резисторы R1, R2 указанных на схеме номиналов можно составить из нескольких последовательно соединенных меньшего сопротивления. Если такого варианта нет, установите резисторы меньших номиналов, а конденсаторы - больших.

Конденсаторы могут быть неполярные керамические либо пленочные, например, серий КМ-5, КМ-6, К73-17. Лампы накаливания применены от "мигающей" елочной гирлянды китайского производства на напряжение 6 В и ток 100 мА. Подойдут также малогабаритные лампы на напряжение 6 В и ток 60 либо 20 мА.

Вместо транзисторов указанной серии, выдерживающих постоянный ток до 180 мА, допустимо применить рассчитанные на больший ток ключи серий КР1064КТ1, КР1014КТ1. В случае использования мультивибратора с более мощной нагрузкой, скажем, автомобильными лампами накаливания, понадобятся другие транзисторы, например КП744Г, допускающие ток стока до 9 А. Но при этом варианте нужно между затвором и истоком установить защитные стабилитроны на напряжение 8...10 В (катодом к затвору) - КС191Ж или аналогичные. При больших токах нагрузки транзисторы придется установить на теплоотводы.

Налаживают мультивибратор подбором конденсаторов до получения желаемой частоты переключения транзисторов. Для работы устройства на звуковых частотах конденсаторы должны быть емкостью 300...600 пф. Если же оставить конденсаторы указанной на схеме емкости, придется подобрать резисторы меньшего сопротивления - вплоть до 47 кОм.

Мультивибратор работоспособен при напряжении питания 3...10 В, разумеется, с соответствующей нагрузкой. Если его предполагается использовать в качестве какого-то узла в разрабатываемой конструкции, между проводами питания мультивибратора устанавливают блокировочный конденсатор емкостью 0,1...100 мкФ.

РАДИОсигнал:

МУЛЬТИВИБРАТОР-1
Просто теория или теория по-простому

«МУЛЬТИ» - много, «ВИБРАТО» - вибрация, колебание, следовательно, «МУЛЬТИВИБРАТОР» - это устройство, которое создает (генерирует) много-много колебаний.
Разберемся сначала в том, как он создает колебания, или как в нем возникают колебания, а уж потом выясним, почему их много.

2. КАК СОЗДАТЬ МУЛЬТИВИБРАТОР?
Шаг №1. Возьмем простейший усилитель НЧ (см. мою статью «Транзистор», п.4 на странице «Радиокомпоненты»):

(Здесь я не описываю его принцип действия).
Шаг №2. Объединим два идентичных усилителя так, чтобы получился двухкаскадный УНЧ:


Шаг №3. Соединим выход этого усилителя с его входом:


Возникнет так называемая положительная обратная связь (ПОС). Вы наверняка слышали свист, который издавали звуковые колонки, если человек с микрофоном становился слишком близко к ним. То же самое происходит с музыкальным центром в режиме «караоке», если поднести микрофон к колонкам. В любом таком случае сигнал с выхода усилителя поступает на его же вход, усилитель входит в режим самовозбуждения и превращается в автогенератор, возникает звук. Иногда усилитель может самовозбуждаться даже на ультразвуковых частотах. Короче – при изготовлении усилителей ПОС вредна и с ней всячески приходится бороться, но это уже несколько другая история.
Вернемся к нашему усилителю, охваченному ПОС, т.е. МУЛЬТИВИБРАТОРУ! Да, это уже он! Правда, изображать именно мультивибратор принято так, как на рис. справа. Кстати, в сети имеется достаточное количество «извращенцев», которые рисуют эту схему и перевернутой, и на боку лежащей. Зачем это? Наверное, как в анекдоте, «чтобы отличаться». Или вы делиться, или (есть такое русское слово!) вы пендриться.

Мультивибратор можно собрать на транзисторах n-p-n или p-n-p:

Оценить работу мультивибратора можно на слух или зрительно. В первом случае нагрузкой должен быть звуковой излучатель, во втором – лампочка или светодиод:


В случае применения низкоомных динамиков, потребуется выходной трансформатор или дополнительный усилительный каскад:


Нагрузка может быть включена в оба плеча мультивибратора:


В случае применения светодиодов желательно включить дополнительные резисторы, роль которых и выполняют, в данном случае, R1 и R4.

3. КАК РАБОТАЕТ МУЛЬТИВИБРАТОР?


В момент включения питания транзисторы обоих плеч мультивибратора открываются, так как на их базы через соответствующие им резисторы R2 и R3 подаются положительные (отрицательные – здесь и далее в скобках для p-n-p транзисторов) напряжения смещения. Одновременно начинают заряжаться конденсаторы связи: С1 - через эмиттерный переход транзистора VТ2 и резистор R1; С2 - через эмиттерный переход транзистора V1 и резистор R4. Эти цепи зарядки конденсаторов, являясь делителями напряжения источника питания, создают на базах транзисторов (относительно эмиттеров) все возрастающие по значению положительные (отрицательные) напряжения, стремящиеся все больше открыть транзисторы. Открывание транзистора вызывает снижение положительного (отрицательного) напряжения на его коллекторе, что вызывает снижение положительного (отрицательного) напряжения на базе другого транзистора, закрывая его. Такой процесс протекает сразу в обоих транзисторах, однако закрывается только один из них, на базе которого более высокое отрицательное (положительное) напряжение, например, из-за разницы коэффициентов передачи токов h21э (см. мою статью «Транзистор», п.4 на странице «Радиокомпоненты»), номиналов резисторов и конденсаторов, поскольку, даже при подборе идентичных пар, параметры элементов все равно будут несколько отличаться. Второй транзистор остается открытым. Но эти состояния транзисторов неустойчивы, ибо электрические процессы в их цепях продолжаются. Допустим, что через некоторое время после включения питания закрытым оказался транзистор V2, а открытым - транзистор V1. С этого момента конденсатор С1 начинает разряжаться через открытый транзистор V1, сопротивление участка эмиттер-коллектор которого в это время мало, и резистор R2. По мере разрядки конденсатора С1 отрицательное (положительное) напряжение на базе закрытого транзистора V2 уменьшается. Как только конденсатор полностью разрядится и напряжение на базе транзистора V2 станет близким нулю, в коллекторной цепи этого, теперь уже открывающегося транзистора появляется ток, который воздействует через конденсатор С2 на базу транзистора V1 и понижает положительное (отрицательное) напряжение на ней. В результате ток, текущий через транзистор V1, начинает уменьшаться, а через транзистор V2, наоборот, увеличиваться. Это приводит к тому, что транзистор V1 закрывается, а транзистор V2 открывается. Теперь начнет разряжаться конденсатор С2, но через открытый транзистор V2 и резистор R3, что в конечном итоге приводит к открыванию первого и закрыванию второго транзисторов и т.д. Транзисторы все время взаимодействуют, в результате чего мультивибратор генерирует электрические колебания.
Работу мультивибратора иллюстрируют графики зависимостей напряжений Uбэ и Uк одного и второго транзисторов:

Как видно, мультивибратор генерирует, практически, «прямоугольные» колебания. Некоторое нарушение прямоугольной формы связано с переходными процессами в моменты отпирания транзисторов. Отсюда же видно, что сигнал можно «снимать» с любого транзистора. Просто наиболее принято изображать именно так, как это показано выше.
На практике можно считать форму колебаний мультивибратора «чисто прямоугольной»:

С одной стороны, кажется, что форма сигнала мультивибратора довольно простая. Но это не совсем так. Точнее, совсем не так . Наиболее простая форма сигнала – это синусоида:

Если генератор создает идеальный синусоидальный сигнал, то ему соответствует строго одна определенная частота колебаний. Чем больше форма сигнала отличается от синусоиды, тем больше в спектре сигнала присутствует частот, кратных основной. А форма сигнала мультивибратора довольно далека от синусоиды. Следовательно, если, например, частота его колебаний составляет 1000 Гц, то в спектре будут присутствовать частоты и 2000 Гц, и 3000 Гц, и 4000 Гц… и т.д. правда амплитуды этих гармоник будут значительно меньше основного сигнала. Но они будут! Вот почему данный генератор называется МУЛЬТИ вибратор.
Частота колебаний мультивибратора зависит как от емкости конденсаторов связи, так и от сопротивления базовых резисторов. Если в мультивибраторе соблюдаются условия: R1=R4, R2=R3, R1симметричным . Как видно, конденсаторы связи могут быть электролитическими и при n - p - n транзисторах плюсы конденсаторов подключаются к коллекторам. Если применить p - n - p транзисторы, надо поменять полярность источника питания и полярность электролитических конденсаторов.
Примерную частоту колебаний симметричного мультивибратора можно подсчитать по упрощенной формуле:
, где f - частота в Гц, R - сопротивление базового резистора в кОм, С - ёмкость конденсатора связи в мкФ.

4. ИЗМЕНЕНИЕ ЧАСТОТЫ и не только
Как было отмечено выше, частота импульсов, генерируемых мультивибратором, определяется величинами разделительных конденсаторов и базовых резисторов. Из приведенной формулы видно, что увеличение емкости конденсаторов и/или увеличение сопротивления базовых резисторов ведет к уменьшению частоты мультивибратора и, соответственно, наоборот. Конечно, впаивать конденсаторы разной емкости или резисторы разного сопротивления можно, но лишь на стадии экспериментов. Оперативно частоту меняют переменным резистором R5 в базовых цепях:

Форма графика колебаний мультивибратора называется «меандр»:


Время от начала одного импульса до начала другого – период Т – состоит из:
tи – длительности импульса и tп – длительности паузы.
Отношение S=Т/tи - называется скважностью . Для симметричного мультивибратора S=2.
Величина, обратная скважности называется коэффициентом заполнения D=1/S. Для симметричного мультивибратора D=0,5.
Мультивибратор, схема которого показана ниже, вырабатывает прямоугольные импульсы. Частоту их повторения можно изменять в широких пределах, при этом скважность импульсов остаётся неизменной .


Работа мультивибратора отличается тем, что в моменты времени, когда транзистор VТ1 закрыт, конденсатор С2 разряжается через цепочку, состоящую из диода VD3 и резистора R4, а также через резистор R3. Аналогично, когда закрыт транзистор VТ2, конденсатор С1 разряжается через диод VD2 и резисторы R4 и R5.
Частоту повторения импульсов можно регулировать в больших пределах, изменяя только сопротивление резистора R4.
Мультивибратор с данными деталей, показанными на схеме, генерирует импульсы с частотой повторения от 140 до 1400 Гц.
В мультивибраторе можно применить диоды Д2В-Д2И, Д9В-Д9Л, и любые маломощные транзисторы со структурой n-р-n или р-n-р. При использовании транзисторов со структурой р-n-р полярность включения всех диодов и источника питания необходимо поменять на обратную.
Если немного изменить включение резистора R7, то пучится мультивибратор с изменяемой скважностью импульсов:


В зависимости от положения движка резистора R7данный мультивибратор становится несимметричным, и график его колебаний может быть, например, таким:


В одном и другом случаях меняется соотношение Т/tи – меняется скважность.
Понятно, надеюсь, также и то, что грубо менять скважность можно, установив конденсаторы разной емкости.

5. НЕСИММЕТРИЧНЫЙ МУЛЬТИВИБРАТОР на транзисторах разной проводимости :

Несимметричный мультивибратор состоит из усилительного каскада на двух транзисторах, выход которого (коллектор транзистора VT2) соединен с входом (база транзистора VT1) через конденсатор C1. Нагрузкой является резистор R2, с которого снимается сигнал (вместо него может быть включен светодиод, лампочка накаливания или динамик). Транзистор VT1 прямой проводимости (p-n-p типа), открывается при подаче на базу отрицательного относительно эмиттера потенциала. Транзистор VT2 обратной проводимости (n-p-n типа), открывается при подаче на базу положительного относительно эмиттера потенциала.

При включении конденсатор C1 заряжается через резисторы R2 и R1, потенциал базы уменьшается. Когда на базе VT1 возникает отрицательный потенциал, транзистор VT1 открывается, сопротивление коллектор-эмиттер падает. База транзистора VT2 оказывается соединенной с положительным полюсом источника, транзистор VT2 также открывается, ток коллектора растет. В результате через R2 течет ток, конденсатор C1 разряжается через резистор R1 и транзистор VT2. Потенциал базы VT1 возрастает, транзистор VT1 закрывается, вызывая закрывание транзистора VT2. После этого конденсатор C1 снова заряжается, затем разряжается и т.д. Частота генерируемых импульсов обратно пропорциональна времени заряда конденсатора T ~ R1×C. С ростом напряжения питания конденсатор заряжается быстрее, частота генерируемых импульсов растет. При увеличении сопротивления резистора R1 или ёмкости конденсатора С1 частота колебаний уменьшается.
Реально частоту изменяют, например, так:

Примеры с сайта http://lessonradio.narod.ru/Diagram.htm

6. ЖДУЩИЙ МУЛЬТИВИБРАТОР
Такой мультивибратор генерирует импульсы тока (или напряжения) при подаче на его вход запускающих сигналов от другого источника, например от автоколебательного мультивибратора. Чтобы автоколебательный мультивибратор превратить в мультивибратор ждущий (см. схему из п. 3), надо сделать следующее: конденсатор С2 удалить, а вместо него между коллектором транзистора VT2 и базой транзистора VT1 включить резистор R3; между базой транзистора VT1 и заземленным проводником включить последовательно соединенные элемент на 1,5 В и резистор сопротивлением R5, но так, чтобы с базой соединялся (через R5) положительный полюс элемента; к базовой цепи транзистора VТ1 подключить конденсатор С2, второй вывод которого будет выполнять роль контакта входного управляющего сигнала . Исходное состояние транзистора VТ1 такого мультивибратора - закрытое, транзистора VТ2 - открытое. Напряжение на коллекторе закрытого транзистора должно быть близким к напряжению источника питания, а на коллекторе открытого транзистора - не превышать 0,2 - 0,3 В. Миллиамперметр (на ток 10-15 мА) включить в коллекторную цепь транзистора V1 и, наблюдая за его стрелкой, включить между контактом УПР сигнал и заземленным проводником, буквально на мгновение, один-два элемента ААА, соединенные последовательно (на схеме GB1). ВНИМАНИЕ: отрицательный полюс этого внешнего электрического сигнала должен подключаться к контакту УПР сигнал . При этом стрелка миллиамперметра должна тут же отклониться до значения наибольшего тока коллекторной цепи транзистора, застыть на некоторое время, а затем вернуться в исходное положение, чтобы ожидать следующего сигнала. Если повторить этот опыт несколько раз, то миллиамперметр при каждом сигнале будет показывать мгновенно возрастающий до 8 - 10 мА и спустя некоторое время, так же мгновенно убывающий почти до нуля коллекторный ток транзистора VТ1. Это одиночные импульсы тока, генерируемые мультивибратором. Даже если батарею GB1 подольше держать подключенной к зажиму УПР сигнал , произойдет то же самое - на выходе мультивибратора появится только один импульс.


Если коснуться вывода базы транзистора VТ1 каким-либо металлическим предметом, взятым в руку, то, возможно, и в этом случае ждущий мультивибратор сработает - от электростатического заряда тела. Можно включить миллиамперметр в коллекторную цепь транзистора VТ2. При подаче управляющего сигнала коллекторный ток этого транзистора должен резко уменьшиться почти до нуля, а затем так же резко увеличиться до значения тока открытого транзистора. Это тоже импульс тока, но отрицательной полярности.
Каков принцип действия ждущего мультивибратора? В таком мультивибраторе связь между коллектором транзистора VТ2 и базой транзистора VТ1 не емкостная, как в автоколебательном, а резистивная - через резистор R3. На базу транзистора VТ2 через резистор R2 подается открывающее его отрицательное напряжение смещения. Транзистор же VТ1 надежно закрыт положительным напряжением элемента G1 на его базе. Такое состояние транзисторов весьма устойчиво. В таком состоянии VT1 может находиться сколько угодно времени. При появлении на базе транзистора VТ1 импульса напряжения отрицательной полярности транзисторы переходят в режим неустойчивого состояния. Под действием входного сигнала транзистор VТ1 открывается, а изменяющееся при этом напряжение на его коллекторе через конденсатор С1 закрывает транзистор VТ2. В таком состоянии транзисторы находятся до тех пор, пока не разрядится конденсатор С1 (через резистор R2 и открытый транзистор VТ1, сопротивление которого в это время мало). Как только конденсатор разрядится, транзистор VТ2 тут же откроется, а транзистор VТ1 закроется. С этого момента мультивибратор вновь оказывается в исходном, устойчивом ждущем режиме. Таким образом, ждущий мультивибратор имеет одно устойчивое и одно неустойчивое состояние . Во время неустойчивого состояния он генерирует один прямоугольный импульс тока (напряжения), длительность которого зависит от емкости конденсатора С1. Чем больше емкость этого конденсатора, тем больше длительность импульса. Так, например, при емкости конденсатора 50 мкФ мультивибратор генерирует импульс тока длительностью около 1,5 с, а с конденсатором емкостью 150 мкФ - раза в три больше. Через дополнительные конденсаторы - положительные импульсы напряжения можно снимать с выхода 1, а отрицательные с выхода 2. Только ли импульсом отрицательного напряжения, поданным на базу транзистора VТ1, можно вывести мультивибратор из ждущего режима? Нет, не только. Это можно сделать и подачей импульса напряжения положительной полярности, но на базу транзистора VТ2.
Как практически можно использовать ждущий мультивибратор? По-разному. Например, для преобразования синусоидального напряжения в импульсы напряжения (или тока) прямоугольной формы такой же частоты, или включения на какое-то время другого прибора путем подачи на вход ждущего мультивибратора кратковременного электрического сигнала.

Пример применения ждущего мультивибратора – индикатор максимального числа оборотов.
При обкатке нового автомобиля, число оборотов двигателя не должно превышать в течение определенного времени максимально допустимого значения, рекомендованного заводом-изготовителем.
Для контроля числа оборотов двигателя, можно воспользоваться устройством, собранным по приводимой здесь схеме. В качестве индикатора максимального числа оборотов двигателя использована лампа накаливания.


Основными частями тахометра являются ждущий мультивибратор на транзисторах Т1 и Т2 и триггер Шмитта на транзисторах T5 и Т6. Входной сигнал, поступающий с прерывателя, подается на дифференцирующую цепочку R4C1 (это необходимо для получения импульсов одинаковой длительности). Дальнейшее формирование сигнала выполняет мультивибратор. Диод Д1 не пропускает отрицательные полуволны входного сигнала на базу транзистора Т2. Импульсы, генерируемые мультивибратором, через эмиттерный повторитель, выполненный на транзисторе Т3, и интегрирующую цепочку R7C3 поступают на триггер Шмитта. Индикаторная лампа Л1, включенная в эмиттерную цепь транзистора T6, загорается только тогда, когда число оборотов двигателя станет больше заранее установленного (с помощью переменного резистора R8).
Калибровку готового прибора можно произвести по образцовому тахометру или по звуковому генератору. Так, например, для четырехтактного четырехцилиндрового двигателя 1500 об/мин соответствует частота звукового генератора 60 Гц, 3000 об/мин - 100 Гц, 6000 об/мин - 200 Гц и так далее.
При использовании деталей с данными, которые указаны на схеме, тахометр позволяет регистрировать от 500 до 10000 об/мин. Потребляемый ток - 20 мА.
Транзисторы ВС107 можно заменить на КТ315 с любым буквенным индексом. В качестве диода Д1 можно использовать любой кремниевый диод. Применение германиевых транзисторов и диодов не рекомендуется из-за тяжелого температурного режима.

7. МУЛЬТИВИБРАТОРЫ МНОГОФАЗНЫЕ
получаются путём добавления усилительных каскадов и ПОС.
Трёхфазный мультивибратор:


Пример с сайта http://www.votshema.ru/324-simmetrichnyy-multivibrator.html

Четрёхфазный мультивибратор требует особых мер для обеспечения стабильности работы:


Пример с сайта http://www.moyashkola.net/krugok/r_begog.htm

8. МУЛЬТИВИБРАТОРЫ НА ЛОГИЧЕСКИХ ЭЛЕМЕНТАХ
Мультивибратор может быть выполнен на логических элементах, например, И-НЕ. Схема возможного варианта, например, такая:


Функцию активных элементов здесь выполняют логические элементы 2И-НЕ (см. мою статью «МИКРОСХЕМА» на стр. «РАДИОкомпоненты»), включенные инверторами. Благодаря ПОС между выходом DD1.2 и входом DD1.1, а также выходом DD1.1 и входом DD1.2, создаваемым конденсаторами С1 и С2, устройство возбуждается и генерирует электрические импульсы. Частота следования импульсов зависит от номиналов конденсаторов и резисторов R1 и R2. Уменьшив емкости конденсаторов до 1…5 мкФ получим звуковую частоту 500…1000 Гц. Головной телефон надо подключить к одному из выходов мультивибратора через конденсатор емкостью 0,01…0,015 мкФ.
Иногда этот же мультивибратор изображают так:

Мультивибратор может быть выполнен на трёх логических элементах:


Все элементы включены инверторами и соединены последовательно. Времязадающая цепочка образована С1 и R1. В качестве индикатора можно использовать лампочку накаливания. Для плавного изменения частоты вместо R1 следует включить переменный резистор на 1,5 кОм.

Если ёмкость конденсатора будет 1 мкФ, то частота колебаний станет звуковой.
Как работает такой мультивибратор? После включения какой-то из логических элементов первым примет одно из возможных состояний и тем самым повлияет на состояние других элементов. Пусть это будет элемент DD1.2, который оказался в единичном состоянии. Через элементы DD1.1 и DD1.2 мгновенно заряжается конденсатор, и элемент DD1.1 оказывается в нулевом состоянии. В таком же состоянии оказывается элемент DD1.3, поскольку на его входе логическая 1. Такое состояние неустойчиво, потому что на выходе DD1.3 логический 0, и конденсатор начинает разряжаться через резистор и выходной каскад элемента DD1.3. По мере разрядки положительное напряжение на входе элемента DD1.1 уменьшается. Как только оно станет равным пороговому, этот элемент переключится в единичное состояние, а элемент DD1.2 – в нулевое. Конденсатор начнет заряжаться через элемент DD1.3 (на его выходе теперь уровень логической 1), резистор и элемент DD1.2. Вскоре напряжение на входе первого элемента превысит пороговое, и все элементы переключатся в противоположные состояния. Так формируются электрические импульсы на выходе мультивибратора – на инверсном выходе элемента DD1.3.
«Трёхэлементный» мультивибратор можно упростить, удалив из него DD1.3:

Работает он аналогично предыдущему. Именно такой мультивибратор чаще всего применяется в различных радиоэлектронных устройствах.

На логических элементах можно сделать и ждущий мультивибратор. Как и предыдущий, он построен на 2-х логических элементах.


Первый DD1.1 используется по своему прямому назначению – как элемент 2И-НЕ. Кнопка SB1 выполняет функцию датчика запускающих сигналов. Для индикации импульсов используется, например, светодиод. Длительность импульсов можно увеличивать, увеличивая ёмкость С1 и сопротивление R1. Вместо R1 можно включить переменный (подстроечный) резистор сопротивлением около 2 кОм (но не более 2,2 кОм) для изменения длительности импульсов в некоторых пределах. Но при сопротивлении менее 100 Ом мультивибратор перестанет работать.
Принцип действия. В начальный момент нижний вывод элемента DD1.1 ни с чем не соединён – на нём уровень логической 1. А для элемента 2И-НЕ этого достаточно, чтобы он оказался в нулевом состоянии. На входе DD1.2 также уровень логического 0, поскольку падение напряжения на резисторе, создаваемое входным током элемента, удерживает входной транзистор элемента в закрытом состоянии. Напряжение логической 1 на выходе этого элемента поддерживает первый элемент в нулевом состоянии. При нажатии кнопки на вход первого элемента подаётся запускающий импульс отрицательной полярности, который переключает элемент DD1.1 в единичное состояние. Возникающий в этот момент скачок положительного напряжения на его выходе передаётся через конденсатор на входы второго элемента и переключает его из единичного состояния в нулевое. Такое состояние элементов остаётся и после окончания действия запускающего импульса. С момента появления положительного импульса на выходе первого элемента начинает заряжаться конденсатор – через выходной каскад этого элемента и резистор. По мере зарядки напряжение на резисторе падает. Как только оно достигнет порогового, второй элемент переключится в единичное состояние, а первый – в нулевое. Конденсатор быстро разрядится через выходной каскад первого элемента и водной каскад второго, и устройство окажется в ждущем режиме.
Следует иметь ввиду, что для нормальной работы мультивибратора длительность запускающего импульса должна быть меньше длительности формируемого.

P.S. Тема "МУЛЬТИВИБРАТОР" является примером творческого подхода к изучению электрических колебаний в курсе школьной физики. И не только. Создание простых схем, моделирование их работы, наблюдение и измерение электрических величин - это выход далеко за рамки обычной школьной физики и информатики. А создание реальных устройств совершенно меняет представление молодых людей о том, что и как можно ИЗУЧАТЬ в школе (терпеть не могу слово "УЧИТЬ").

Генератор – это автоколебательная система, формирующая импульсы электрического тока, в которой транзистор играет роль коммутирующего элемента. Изначально, с момента изобретения, транзистор позиционировался как усилительный элемент. Презентация первого транзистора произошла в 1947 году. Презентация полевого транзистора произошла несколько позже – в 1953 г. В генераторах импульсов он играет роль переключателя и только в генераторах переменного тока он реализует свои усилительные свойства, одновременно участвуя в создании положительной обратной связи для поддержки колебательного процесса.

Наглядная иллюстрация деления частотного диапазона

Классификация

Транзисторные генераторы имеют несколько классификаций:

  • по диапазону частот выходного сигнала;
  • по типу выходного сигнала;
  • по принципу действия.

Диапазон частот – величина субъективная, но для стандартизации принято такое деление частотного диапазона:

  • от 30 Гц до 300 кГц – низкая частота (НЧ);
  • от 300 кГц до 3 МГц – средняя частота (СЧ);
  • от 3 МГц до 300 МГц – высокая частота (ВЧ);
  • выше 300 МГц – сверхвысокая частота (СВЧ).

Таково деление частотного диапазона в области радиоволн. Существует звуковой диапазон частот (ЗЧ) – от 16 Гц до 22 кГц. Таким образом, желая подчеркнуть диапазон частот генератора, его называют, например ВЧ или НЧ генератором. Частоты звукового диапазона в свою очередь также подразделяются на ВЧ, СЧ и НЧ.

По типу выходного сигнала генераторы могут быть:

  • синусоидальные – для генерации синусоидальных сигналов;
  • функциональные – для автоколебания сигналов специальной формы. Частный случай – генератор прямоугольных импульсов ;
  • генераторы шума – генераторы широкого спектра частот, у которых в заданном диапазоне частот спектр сигнала равномерный от нижнего до верхнего участка частотной характеристики.

По принципу действия генераторов:

  • RC-генераторы;
  • LC-генераторы;
  • Блокинг-генераторы – формирователь коротких импульсов.

Ввиду принципиальных ограничений обычно RC-генераторы используются в НЧ и звуковом диапазоне, а LC-генераторы в ВЧ диапазоне частот.

Схемотехника генераторов

RC и LC генераторы синусоидальные

Наиболее просто реализуется генератор на транзисторе в схеме емкостной трехточки – генератор Колпитца (рис. ниже).

Схема генератора на транзисторе (генератор Колпитца)

В схеме Колпитца элементы (C1), (C2), (L) являются частотозадающими. Остальные элементы представляют собой стандартную обвязку транзистора для обеспечения необходимого режима работы по постоянному току. Такой же простой схемотехникой обладает генератор, собранный по схеме индуктивной трехточки – генератор Хартли (рис. ниже).

Схема трехточечного генератора с индуктивной связью (генератор Хартли)

В этой схеме частота генератора определяется параллельным контуром, в который входят элементы (C), (La), (Lb). Конденсатор (С) необходим для образования положительной обратной связи по переменному току.

Практическая реализация такого генератора более затруднительна, поскольку требует наличия индуктивности с отводом.

И тот и другой генераторы автоколебания находят преимущественно применение в СЧ и ВЧ диапазонах в качестве генераторов несущих частот, в частотозадающих цепях гетеродинов и так далее. Регенераторы радиоприемников также основаны на генераторах колебаний. Указанное применение требует высокой стабильности частоты, поэтому практически всегда схема дополняется кварцевым резонатором колебаний.

Задающий генератор тока на основе кварцевого резонатора имеет автоколебания с очень высокой точностью установки значения частоты ВЧ генератора. Миллиардные доли процента далеко не предел. Регенераторы радиостанций используют только кварцевую стабилизацию частоты.

Работа генераторов в области низкочастотного тока и звуковой частоты связана с трудностями реализации высоких значений индуктивности. Если быть точнее, то в габаритах необходимой катушки индуктивности.

Схема генератора Пирса является модификацией схемы Колпитца, реализованной без применения индуктивности (рис. ниже).

Схема генератора Пирса без применения индуктивности

В схеме Пирса индуктивность заменена кварцевым резонатором, что позволило избавиться от трудоемкой и громоздкой катушки индуктивности и, в то же время, ограничило верхний диапазон колебаний.

Конденсатор (С3) не пропускает постоянную составляющую базового смещения транзистора на кварцевый резонатор. Такой генератор может формировать колебания до 25 МГц, в том числе и звуковой частоты.

Работа всех вышеперечисленных генераторов основана на резонансных свойствах колебательной системы, составленной из емкости и индуктивности. Соответственно, частота колебаний определяется номиналами этих элементов.

RC генераторы тока используют принцип фазового сдвига в резистивно-емкостной цепи. Наиболее часто применяется схема с фазосдвигающей цепочкой (рис. ниже).

Схема RC генератора с фазосдвигающей цепочкой

Элементы (R1), (R2), (C1), (C2), (C3) выполняют сдвиг фазы для получения положительной обратной связи, необходимой для возникновения автоколебаний. Генерация возникает на частотах, для которых фазовый сдвиг оптимален (180 гр). Фазосдвигающая цепь вносит сильное ослабление сигнала, поэтому такая схема имеет повышенные требования к коэффициенту усиления транзистора. Менее требовательна к параметрам транзистора схема с мостом Вина (рис. ниже).

Схема RC генератора с мостом Вина

Двойной Т-образный мост Вина состоит из элементов (C1), (C2), (R3) и (R1), (R2), (C3) и представляет собой узкополосный заграждающий фильтр, настроенный на частоту генерации. Для всех остальных частот транзистор охвачен глубокой отрицательной связью.

Функциональные генераторы тока

Функциональные генераторы предназначены для формирования последовательности импульсов определенной формы (форму описывает некая функция – отсюда и название). Наиболее часто встречаются генераторы прямоугольных (если отношение длительности импульса к периоду колебаний составляет ½, то такая последовательность называется «меандр»), треугольных и пилообразных импульсов. Самый простой генератор прямоугольных импульсов – мультивибратор, подается как первая схема начинающих радиолюбителей для сборки своими руками (рис. ниже).

Схема мультивибратора – генератора прямоугольных импульсов

Особенностью мультивибратора является то, что в нем можно использовать практически любые транзисторы. Длительность импульсов и пауз между ними определяется номиналами конденсаторов и резисторов в базовых цепях транзисторов (Rb1), Cb1) и (Rb2), (Cb2).

Частота автоколебания тока может изменяться от единиц герц до десятков килогерц. ВЧ автоколебания на мультивибраторе реализовать невозможно.

Генераторы треугольных (пилообразных) импульсов, как правило, строятся на основе генераторов прямоугольных импульсов (задающий генератор) путем добавления корректирующей цепочки (рис. ниже).

Схема генератора треугольных импульсов

Форма импульсов, близкая к треугольной, определяется напряжением заряда-разряда на обкладках конденсатора С.

Блокинг-генератор

Предназначение блокинг-генераторов состоит в формировании мощных импульсов тока, имеющих крутые фронты и малую скважность. Длительность пауз между импульсами намного больше длительности самих импульсов. Блокинг-генераторы находят применение в формирователях импульсов, сравнивающих устройствах, но основная область применения – задающий генератор строчной развертки в устройствах отображения информации на основе электронно-лучевых трубок. Также блокинг-генераторы с успехом применяются в устройствах преобразования электроэнергии.

Генераторы на полевых транзисторах

Особенностью полевых транзисторов является очень высокое входное сопротивление, порядок которого соизмерим с сопротивлением электронных ламп. Перечисленные выше схемотехнические решения универсальны, просто они адаптированы под использование различных типов активных элементов. Генераторы Колпитца, Хартли и другие, выполненные на полевом транзисторе, отличаются только номиналами элементов.

Частотозадающие цепи имеют те же соотношения. Для генерирования ВЧ колебаний несколько предпочтительнее простой генератор, выполненный на полевом транзисторе по схеме индуктивной трехточки. Дело в том, что полевой транзистор, имея высокое входное сопротивление, практически не оказывает шунтирующее действие на индуктивность, а, следовательно, работать высокочастотный генератор будет стабильнее.

Генераторы шума

Особенностью генераторов шума является равномерность частотной характеристики в определенном диапазоне, то есть амплитуда колебаний всех частот, входящих в заданный диапазон, является одинаковой. Генераторы шума находят применение в измерительной аппаратуре для оценки частотных характеристик проверяемого тракта. Генераторы шума звукового диапазона часто дополняются корректором частотной характеристики с целью адаптации под субъективную громкость для человеческого слуха. Такой шум называется «серым».

Видео

До сих пор существует несколько областей, в которых применение транзисторов затруднено. Это мощные генераторы СВЧ диапазона в радиолокации, и там, где требуется получение особо мощных импульсов высокой частоты. Пока еще не разработаны мощные транзисторы СВЧ диапазона. Во всех других областях подавляющее большинство генераторов выполняется исключительно на транзисторах. Причин этому несколько. Во-первых, габариты. Во-вторых, потребляемая мощность. В-третьих, надежность. Вдобавок ко всему, транзисторы из-за особенностей своей структуры очень просто поддаются миниатюризации.

Аннотация

В данной пояснительной записке представлены описание схемы и временных диаграмм, расчетные методики мультивибратора на полевых транзисторах. В соответствии с заданием рассчитаны необходимые параметры схемы.

THE SUMMARY

In the given explanatory note the description of the circuit and time diagrams, settlement techniques of the multivibrator on field transistors are submitted. According to the task necessary parameters of the circuit are designed.


период следования импульсов Т: 200 мкс

длительность

: 10 мкс

длительность среза

: 1 мкс

амплитуда импульсов U вых. u: -10 В


Титульный лист

Аннотация

Техническое задание

Введение

1.Описание схемы устройства фантастронного генератора пилообразного напряжения

2.Расчет фантастронного генератора пилообразного напряжения

2.1.Электрические расчеты

2.2.Выбор обоснование элементной базы

Заключение

Библиографический список

Спецификация

Временные диаграммы


ВВЕДЕНИЕ

Электронная вычислительная техника – сравнительно молодое научно-техническое направление, но она оказывает самое революционизирующее воздействие на все области науки и техники, на все стороны жизни общества. Характерно постоянное развитие элементной базы ЭВМ. Элементная база развивается очень быстро; появляются новые типы логических схем, модифицируются существующие. Существует множество различных электронных устройств: логические элементы, регистры, сумматоры, дешифраторы, мультиплексоры, счетчики, делители частоты, триггеры, генераторы и др.

Генераторы преобразуют энергию источника питания в энергию периодических или квазипериодических электрических колебаний. Основное назначение генераторов в электронике – это формирование импульсов начальной установки и синхронизации, управляющих сигналов различной формы и длительности.

Все многообразие генераторов можно подразделить на следующие типы:

Генераторы прямоугольных импульсов;

Генераторы линейно-изменяющегося напряжения (ЛИН);

Генераторы ступенчато-изменяющегося напряжения;

Генераторы синусоидальных колебаний

Типичные формы прямоугольных колебаний показаны на рис.1


Генераторы прямоугольных импульсов, имеющие в петле обратной связи элементы, накапливающие энергию, называются мультивибраторами.

Мультивибраторы подразделяются на две группы:

Автоколебательные мультивибраторы;

Ждущие мультивибраторы или одновибраторы.

Основное различие между этими мультивибраторами заключается в том, что автоколебательные мультивибраторы формируют импульсную последовательность при подаче напряжения питания на схему, так как они имеют две цепи обратной связи с накопителями энергии, а ждущие мультивибраторы формируют одиночный импульс с заданными параметрами по внешнему запуску, так как одна петля обратной связи не имеет накопителя энергии. Одновибратор – что-то среднее между мультивибратором и триггером .

Различают мягкий и жесткий режимы возбуждения мультивибраторов. При мягком режиме любые изменения напряжения в цепи обратной связи в момент включения питания приводят к возникновению режима генераций; при жестком режиме генерация возникает, когда напряжение в цепи обратной связи достигает определенного порога.

Мультивибраторы подразделяются на перезапускаемые и неперезапускаемые. В первом случае при подаче импульса запуска генерация выходных сигналов начинается заново с исходного состояния. Перезапуски позволяют неограниченно увеличивать длительность выходного импульса независимо от параметров схемы мультивибратора. Неперезапускаемые мультивибраторы не реагируют на внешние импульсы запуска


1. Описание схемы мультивибратора на полевых транзисторах

Высокое входное сопротивление полевых транзисторов (ПТ) позволяет конструировать мультивибраторы на очень низкие частоты повторения импульсов при малых ёмкостях времязадающих конденсаторов. Благодаря этому форма выходных импульсов оказывается менее искажённой, а скважность больше, чем у мультивибраторов на биполярных транзисторах.

Для автоколебательных мультивибраторов наиболее подходят ПТ с управляющим p-n переходом, так как во время заряда конденсаторов напряжение на участке затвор-исток приложено в прямом направлении и поэтому сопротивление этого участка мало и малым становится время заряда конденсаторов.

Схема мультивибраторов из ПТ с управляющим p-n переходом и каналом p-типа изображена на рис.2. В этом мультивибраторе через резисторы

подаётся небольшое отрицательное напряжение на затвор относительно истока, что повышает стабильность периода колебаний и длительность выходных импульсов В отличие от мультивибратора на БП транзисторах работа устройства не нарушается, если резисторы включить между затвором и общей точкой (схема с «нулевым» затвором).

Временные диаграммы работы несимметричного мультивибратора показаны рис.3. В основных чертах принцип действия этого мультивибратора такой же, как и у лампового. От мультивибратора на БТ его отличает то, что во временно устойчивых состояниях равновесия разряд конденсаторов происходит практически только через резисторы

и не до нулевого напряжения, а до значения, при котором напряжение на затворе становится равным напряжению отсечки (обычно 1-6 В)

2.1. ЭЛЕКТРИЧЕСКИЙ РАСЧЕТ

I. Выбор транзистора. Для обеспечения временно устойчивых состояний равновесия необходимо выбирать транзисторы, у которых

- максимально допустимое напряжение сток-исток, - напряжение отсечки.

По справочнику выбираем ПТ КП103Л, имеющий следующие параметры:

При напряжениях

=10 В и =0 ток стока =3 - 6,6 мА, крутизна характеристики S=1.8 – 3.8 мА/В; ток затвора 20 нА, входная ёмкость пФ, проходная ёмкость пФ и рассеиваемая на коллекторе мощность P = 120 мВт. Рассчитаем средние значения напряжения отсечки и входного сопротивления.

Для расчёта принимаем

Похожие публикации