Определения что такое функция. Что такое математическая функция. Соблюдение вашей конфиденциальности на уровне компании

Менеджмент является важной частью современной социально-экономической системы. Он характеризуется воздействием субъекта в управлении на объект управления. Говоря простым языком, менеджмент — это управление.

Процессы, которые так или иначе неразрывно связаны с управлением, обычно происходят на предприятии на основе так называемого функционального распределения. Суть деятельности по управлению и обеспечивают функции менеджмента

Главные функции

Сегодня самыми главными функциями менеджмента называют планирование, организацию, мотивацию, координацию, контроль.

Раньше в России функции менеджмента были несколько иными и включали в себя такие понятия, как контроль, регулирование, стимулирование, координацию, организацию и планирование.

Также стоит выделить версию, представленную американскими учёными Майклом Месконом, Майклом Альбертом и Франклином Хедоури.

Они и вовсе выделили всего лишь четыре функции менеджмента: планирование, организацию, мотивацию, контроль.

Перечисленные функции управления так либо иначе связаны с процессами принятия решений и общением, то есть коммуникацией.

Сегодня же чаще всего рассматривается вариант наличия ещё более широкого перечня функций менеджмента.

  1. Первое, что необходимо сделать — это поставить цель. (Для этого необходимо ответить на вопрос «Чего я хочу?»).
  2. Следующий этап — это планирование. Планирование заключается в поэтапном описании шагов, которые необходимы для достижения той либо иной цели.
  3. Также не следует забывать и про маркетинг. Для этого необходимо ответить на такие вопросы, как «Что у меня есть и что из этого мне может помочь или помешать на пути достижения цели?»
  4. Также следует решить вопрос и с организацией. Для этого следует ответить на вопросы о том, «Где и что располагается и как всё это лучше всего связать?»
  5. Новая информация. («Какими достижениями можно воспользоваться для того, чтобы достичь цель как можно скорее?»)
  6. Вопрос стимулирования в некоторых случаях и вовсе играет решающее значение. Для того, чтобы ответить на него, следует поставить вопрос «Что необходимо сделать для того, чтобы исполнители в точности выполнили все предписанные мною требования?». Однако вам следует помнить, что стимулирование — это не мотивация, так как мотивация представляет собой целый набор различных внутренних мотивов для отдельно взятого человека.
  7. Нельзя забывать и про вопрос координации. Координация представляет собой результаты отдельно взятых исполнителей, которые должны дать тот либо иной общий результат. Также желательно отсутствии каких-либо дополнительных доработок.
  8. Не следует забывать и про вопрос контроля. «Всё ли идёт именно так, как и запланировано?»).
  9. Анализ и учёт. (Вопросы: «Что получилось в итоге?» + «Была ли достигнута поставленная цель?» + «Что помешало, а что наоборот — помогло?» и многие другие).

Самая главная функция в менеджменте — это функция планирования.

В чём же она заключается и для чего нужна? Реализуя эту функцию, предприниматель на основе полученного анализа может сформулировать те либо иные планы или же программы. Сам же процесс планирования способен позволить сформулировать цель намного более чётко.

После этого можно попытаться воспользоваться полученными результатами для обеспечения более чёткой координации усилий всех структурных подразделений своей компании. Это означает, что планирование — это один из непрерывных процессов по изучению новых возможностей и методов по совершенствованию деятельности фирмы за счёт того, что руководитель способен выявить целый ряд новых возможностей и фактор её деятельности.

Из этого следует, что планы организации не будут носить директивный характер. Более того, они будут меняться лишь в соответствии с той либо иной ситуацией.

Функция организации необходима для формирования структуры фирмы. Кроме этого, она нужна в целях обеспечения её всем необходимым, например, финансовыми средствами. В том плане, который составляет организация, имеется создание условий для того, чтобы достичь запланированную цель.

Функция мотивации позволяет активизировать сотрудников компании для того, чтобы они работали лучше и эффективнее. Это позволит повысить продуктивность всей компании. Самый простой метод для мотивации сотрудников — это предоставление специальных денежных бонусов за достижение определённых целей.

Функция контроля необходима для достижения целей компании. Важно понимать, что контроль должен быть всеобъемлющим, иначе пользы от него практически не будет.

Функция координации заключается в установлении взаимодействия между различными структурами организация для повышения эффективности работы всей компании.

В С++ определены в заголовочном файле функции выполняющие некоторые часто используемые математические задачи. Например, нахождение корня, возведение в степень, sin() , cos() и многие другие. В таблице 1 показаны основные математические функций, прототипы которых содержатся в заголовочном файле .

Таблица 1 — Математические функции в С++
Функция Описание Пример
abs(a) модуль или абсолютное значение от а abs(-3.0)= 3.0
abs(5.0)= 5.0
sqrt(a) корень квадратный из а, причём а не отрицательно sqrt(9.0)=3.0
pow(a, b) возведение а в степень b pow(2,3)=8
ceil(a) округление а до наименьшего целого, но не меньше чем а ceil(2.3)=3.0
ceil(-2.3)=-2.0
floor(a) округление а до наибольшего целого, но не больше чем а floor(12.4)=12
floor(-2.9)=-3
fmod(a, b) вычисление остатка от a/b fmod(4.4, 7.5) = 4.4
fmod(7.5, 4.4) = 3.1
exp(a) вычисление экспоненты е а exp(0)=1
sin(a) a задаётся в радианах
cos(a) a задаётся в радианах
log(a) натуральный логарифм a (основанием является экспонента) log(1.0)=0.0
log10(a) десятичный логарифм а Log10(10)=1
asin(a) арксинус a , где -1.0 < а < 1.0 asin(1)=1.5708

Необходимо запомнить то, что операнды данных функций всегда должны быть вещественными, то есть a и b числа с плавающей точкой. Это связано с тем, что существует несколько экземпляров перегруженных функций, соответствующих списку аргументов. Тему перегруженные функции рассмотрим немного позже, а пока надо запомнить, что a и b числа с плавающей точкой. Разработаем программу, которая будет использовать математические функции.

// math_func.cpp: определяет точку входа для консольного приложения. #include "stdafx.h" #include #include << "log10(10) = " << log10(10.0) << endl; // логарифм десятичный cout << "log10(1) = " << log10(1.0) << endl; cout << "log(2.718281) = " << log(2.718281) << endl; // натуральный логарифм(по основанию экспоненты) exp = 2.718281 cout << "sqrt(9) = " << sqrt(9.0) << endl; // корень квадратный cout << "pow(2,3) = " << pow(2.0,3.0) << endl; // два в кубе cout << "abs(0) = " << abs(0.0) << endl; // модуль от нуля cout << "abs(-5) = " << abs(-5.0) << endl; cout << "ceil(3.14) = " << ceil(3.14) << endl; // округление 3.14 до наименьшего целого, но не меньше чем 3.14 cout << "ceil(-2.4) = " << ceil(-2.4) << endl; // округление -2.4 до наименьшего целого, но не меньше чем -2.4 cout << "floor(3.14) = " << floor(3.14) << endl; // округление 3.14 до наибольшего целого, но не больше чем 3.14 cout << "floor(-2.4) = " << floor(-2.4) << endl; // округление -2.4 до наибольшего целого, но не больше чем -2.4 cout << "fmod(2.4/2.0) = " << fmod(2.4,2.0) << endl; // остаток от деления 2.4/2 system("pause"); return 0; }

// код Code::Blocks

// код Dev-C++

// math_func.cpp: определяет точку входа для консольного приложения. #include #include using namespace std; int main(int argc, char* argv) { cout << "log10(10) = " << log10(10.0) << endl; // логарифм десятичный cout << "log10(1) = " << log10(1.0) << endl; cout << "log(2.718281) = " << log(2.718281) << endl; // натуральный логарифм(по основанию экспоненты) exp = 2.718281 cout << "sqrt(9) = " << sqrt(9.0) << endl; // корень квадратный cout << "pow(2,3) = " << pow(2.0,3.0) << endl; // два в кубе cout << "abs(0) = " << abs(0.0) << endl; // модуль от нуля cout << "abs(-5) = " << abs(-5.0) << endl; cout << "ceil(3.14) = " << ceil(3.14) << endl; // округление 3.14 до наименьшего целого, но не меньше чем 3.14 cout << "ceil(-2.4) = " << ceil(-2.4) << endl; // округление -2.4 до наименьшего целого, но не меньше чем -2.4 cout << "floor(3.14) = " << floor(3.14) << endl; // округление 3.14 до наибольшего целого, но не больше чем 3.14 cout << "floor(-2.4) = " << floor(-2.4) << endl; // округление -2.4 до наибольшего целого, но не больше чем -2.4 cout << "fmod(2.4/2.0) = " << fmod(2.4,2.0) << endl; // остаток от деления 2.4/2 return 0; }

Итак, чтобы воспользоваться данными функциями необходимо подключить заголовочный файл как в строке 5 , после чего можно использовать любую из функций, прототипы которых находятся в этом заголовочном файле. Результат работы программы (см. Рисунок 1).

Log10(10) = 1 log10(1) = 0 log(2.718281) = 1 sqrt(9) = 3 pow(2,3) = 8 abs(0) = 0 abs(-5) = 5 ceil(3.14) = 4 ceil(-2.4) = -2 floor(3.14) = 3 floor(-2.4) = -3 fmod(2.4/2.0) = 0.4

Рисунок 1 — Математические функции в С++

Чтобы увидеть полный перечень функций в данном заголовочном файле, просто откройте его. Сделать это можно либо через поиск, либо через обозреватель решений , если программируете в MVS (см. Рисунок 2). В «Обозревателе решений » открываем вложенный каталог «Внешние зависимости «, в нём находим файл cmath . Открыв его, можно увидеть полный список математических функций.

Рисунок 2 — Математические функции в С++

Открыть заголовочный файл можно, нажав правой кнопкой мыши по его имени, как показано на рисунке 3. В появившемся окне выбираем пункт Открыть документ .

Рисунок 3 — Математические функции в С++

Чаще всего среди доступных групп функций пользователи Экселя обращаются к математическим. С помощью них можно производить различные арифметические и алгебраические действия. Их часто используют при планировании и научных вычислениях. Узнаем, что представляет собой данная группа операторов в целом, и более подробно остановимся на самых популярных из них.

С помощью математических функций можно проводить различные расчеты. Они будут полезны студентам и школьникам, инженерам, ученым, бухгалтерам, планировщикам. В эту группу входят около 80 операторов. Мы же подробно остановимся на десяти самых популярных из них.

Открыть список математических формул можно несколькими путями. Проще всего запустить Мастер функций, нажав на кнопку «Вставить функцию» , которая размещена слева от строки формул. При этом нужно предварительно выделить ячейку, куда будет выводиться результат обработки данных. Этот метод хорош тем, что его можно реализовать, находясь в любой вкладке.

Также можно запустить Мастер функций, перейдя во вкладку «Формулы» . Там нужно нажать на кнопку «Вставить функцию» , расположенную на самом левом краю ленты в блоке инструментов «Библиотека функций» .

Существует и третий способ активации Мастера функций. Он осуществляется с помощью нажатия комбинации клавиш на клавиатуре Shift+F3 .

После того, как пользователь произвел любое из вышеуказанных действий, открывается Мастер функций. Кликаем по окну в поле «Категория» .

Открывается выпадающий список. Выбираем в нем позицию «Математические» .

После этого в окне появляется список всех математических функций в Excel. Чтобы перейти к введению аргументов, выделяем конкретную из них и жмем на кнопку «OK» .

Существует также способ выбора конкретного математического оператора без открытия главного окна Мастера функций. Для этого переходим в уже знакомую для нас вкладку «Формулы» и жмем на кнопку «Математические» , расположенную на ленте в группе инструментов «Библиотека функций» . Открывается список, из которого нужно выбрать требуемую формулу для решения конкретной задачи, после чего откроется окно её аргументов.

Правда, нужно заметить, что в этом списке представлены не все формулы математической группы, хотя и большинство из них. Если вы не найдете нужного оператора, то следует кликнуть по пункту «Вставить функцию…» в самом низу списка, после чего откроется уже знакомый нам Мастер функций.

СУММ

Наиболее часто используется функция СУММ . Этот оператор предназначен для сложения данных в нескольких ячейках. Хотя его можно использовать и для обычного суммирования чисел. Синтаксис, который можно применять при ручном вводе, выглядит следующим образом:

СУММ(число1;число2;…)

В окне аргументов в поля следует вводить ссылки на ячейки с данными или на диапазоны. Оператор складывает содержимое и выводит общую сумму в отдельную ячейку.

СУММЕСЛИ

Оператор СУММЕСЛИ также подсчитывает общую сумму чисел в ячейках. Но, в отличие от предыдущей функции, в данном операторе можно задать условие, которое будет определять, какие именно значения участвуют в расчете, а какие нет. При указании условия можно использовать знаки «>» («больше»), «<» («меньше»), «< >» («не равно»). То есть, число, которое не соответствует заданному условию, во втором аргументе при подсчете суммы в расчет не берется. Кроме того, существует дополнительный аргумент «Диапазон суммирования» , но он не является обязательным. Данная операция имеет следующий синтаксис:

СУММЕСЛИ(Диапазон;Критерий;Диапазон_суммирования)

ОКРУГЛ

Как можно понять из названия функции ОКРУГЛ , служит она для округления чисел. Первым аргументом данного оператора является число или ссылка на ячейку, в которой содержится числовой элемент. В отличие от большинства других функций, у этой диапазон значением выступать не может. Вторым аргументом является количество десятичных знаков, до которых нужно произвести округление. Округления проводится по общематематическим правилам, то есть, к ближайшему по модулю числу. Синтаксис у этой формулы такой:

ОКРУГЛ(число;число_разрядов)

Кроме того, в Экселе существуют такие функции, как ОКРУГЛВВЕРХ и ОКРУГЛВНИЗ , которые соответственно округляют числа до ближайшего большего и меньшего по модулю.

ПРОИЗВЕД

Задачей оператора ПРИЗВЕД является умножение отдельных чисел или тех, которые расположены в ячейках листа. Аргументами этой функции являются ссылки на ячейки, в которых содержатся данные для перемножения. Всего может быть использовано до 255 таких ссылок. Результат умножения выводится в отдельную ячейку. Синтаксис данного оператора выглядит так:

ПРОИЗВЕД(число;число;…)

ABS

С помощью математической формулы ABS производится расчет числа по модулю. У этого оператора один аргумент – «Число» , то есть, ссылка на ячейку, содержащую числовые данные. Диапазон в роли аргумента выступать не может. Синтаксис имеет следующий вид:

ABS(число)

СТЕПЕНЬ

Из названия понятно, что задачей оператора СТЕПЕНЬ является возведение числа в заданную степень. У данной функции два аргумента: «Число» и «Степень» . Первый из них может быть указан в виде ссылки на ячейку, содержащую числовую величину. Второй аргумент указывается степень возведения. Из всего вышесказанного следует, что синтаксис этого оператора имеет следующий вид:

СТЕПЕНЬ(число;степень)

КОРЕНЬ

Задачей функции КОРЕНЬ является извлечение квадратного корня. Данный оператор имеет только один аргумент – «Число» . В его роли может выступать ссылка на ячейку, содержащую данные. Синтаксис принимает такую форму:

КОРЕНЬ(число)

СЛУЧМЕЖДУ

Довольно специфическая задача у формулы СЛУЧМЕЖДУ . Она состоит в том, чтобы выводить в указанную ячейку любое случайное число, находящееся между двумя заданными числами. Из описания функционала данного оператора понятно, что его аргументами является верхняя и нижняя границы интервала. Синтаксис у него такой:

СЛУЧМЕЖДУ(Нижн_граница;Верхн_граница)

ЧАСТНОЕ

Оператор ЧАСТНОЕ применяется для деления чисел. Но в результатах деления он выводит только четное число, округленное к меньшему по модулю. Аргументами этой формулы являются ссылки на ячейки, содержащие делимое и делитель. Синтаксис следующий:

ЧАСТНОЕ(Числитель;Знаменатель)

РИМСКОЕ

Данная функция позволяет преобразовать арабские числа, которыми по умолчанию оперирует Excel, в римские. У этого оператора два аргумента: ссылка на ячейку с преобразуемым числом и форма. Второй аргумент не является обязательным. Синтаксис имеет следующий вид:

РИМСКОЕ(Число;Форма)

Выше были описаны только наиболее популярные математические функции Эксель. Они помогают в значительной мере упростить различные вычисления в данной программе. При помощи этих формул можно выполнять как простейшие арифметические действия, так и более сложные вычисления. Особенно они помогают в тех случаях, когда нужно производить массовые расчеты.

В C++ определены следующие арифметические операторы.

Cложение;

– вычитание;

* умножение

/ деление

% деление по модулю

– – декремент (уменьшение на 1)

Инкремент (увеличение на 1).

Действие операторов +, –, * и / совпадает с действием аналогичных опера­торов в алгебре. Их можно применять к данным любого встроенного числового типа.

После применения оператора деления (/) к целому числу остаток будет отбро­шен. Например, результат целочисленного деления 10/3 будет равен 3. Остаток от деления можно получить с помощью оператора деления по модулю (%). На­пример, 10%3 равно 1. Это означает, что в С++ оператор % нельзя применять к нецелочисленным типам данных.

Операторы инкремента (++) и декремента (– –) обладают очень интересными свойствами. Поэтому им следует уделить особое внимание.

Оператор инкремента выполняет сложение операнда с числом 1, а оператор декремента вычитает 1 из своего операнда. Это значит, что инструкция:

аналогична такой инструкции:

А инструкция:

аналогична такой инструкции:

Операторы инкремента и декремента могут стоять как перед своим операн­дом (префиксная форма), так и после него (постфиксная форма). Например, ин­струкцию

можно переписать в виде префиксной

Х;//префиксная форма оператора инкремента

или постфиксной формы:

х++;//постфиксная форма оператора инкремента

В предыдущем примере не имело значения, в какой форме был применен опе­ратор инкремента: префиксной или постфиксной. Но если оператор инкремента или декремента используется как часть большего выражения, то форма его при­менения очень важна. Если такой оператор применен в префиксной форме, то C++ сначала выполнит эту операцию, чтобы операнд получил новое значение, которое затем будет использовано остальной частью выражения. Если же опера­тор применен в постфиксной форме, то С++ использует в выражении его старое значение, а затем выполнит операцию, в результате которой операнд обретет но­вое значение.

Математические функции

В языке С++ имеются специальные функции для расчета алгебраических выражений. Все такие функции находятся в отдельном заголовочном файле math.h. Поэтому для использования функций в коде программы необходимо подключить данный файл с помощью директивы

#include

Приведем основные алгебраические функции С++.

abs(x) - модуль целого числа;

labs(x) - модуль «длинного» целого;

fabs(x) - модуль числа с плавающей точкой;

sqrt(x) - извлечение квадратного корня;

pow(x,y) - возведение x в степень y;

cos(x) - косинус;

sin(x) - синус;

tan(x) - тангенс;

acos(x) - арккосинус;

asin(x) - арксинус;

atan(x) - арктангенс;

exp(x) - експонента в степени x;

log(x) - натуральный логарифм;

log10(x) - десятичный логарифм

При возведении числа в дробную степень, знаменатель дробной степени нужно записывать в вещественном виде. Например: квадратный корень из а записывается так: pow(a,1/2.0 )

Продемонстрируем использование функций на примерах.

5. Операторы ввода/вывода на языке С++

Для вывода сообщения на экран используется следующий оператор C++:

cout<<”текст”;

#include

Информация, заключенная в двойные кавычки, яв­ляется сообщением, которое должно быть выведено на экран. В языке C++ любая последовательность симво­лов, заключенная в двойные кавычки, называется стро­кой потому, что она состоит из не­скольких символов, соединяемых вместе в более крупный блок (элемент).

Строка в операторе COUT может содержать так называемые подстановочные символы - символы, которых нет на клавиатуре или они заняты под ключевые символы в тексте программы. Перед каждым таким подстановочным символов ставится символ «\».

Приведем перечень таких символов:

\a – звуковой сигнал

\n – переход на новую строку

\t – горизонтальная табуляция

\v – вертикальная табуляция

\\ - обратный слеш

\’ – одинарная кавычка

\” – двойная кавычка

\? – знак вопроса.

Например, оператор вида:

cout>>“пример\nтекста”;

Слово «пример» выведет на одной строке, а слово «текста» на другой.

Оператор вида:

cout>>“магазин\»”чайка\””;

Слово «Чайка» отобразит в двойных кавычках.

Кроме текса оператор может выводить на экран значения переменных, комбинируя их с текстом.

cout<<”a=”<

Форматированный вывод

Для выдачи значений заданной длины или точности оператор cout имеет ряд настроек:

    cout.width(число) – общая длина выводимого значения

    cout.precision(число) – число знаков после запятой

    cout.fill(‘символ-заполнитель’) – символ, которым заполняются лишние позиции на экране

Настройка cout.width после выполнения одного оператора вывода сбрасывается в начальное значение. Поэтому ее приходится указывать отдельно для каждой переменной или строки.

Настройки этих параметров должны проводиться до вызова оператора вывода.

Например:

//описываем переменные

float a=125.478, b=625.365;

//задаем число знаков поле запятой

cout.precision(2);

//задаем заполнитель для лишний позиций

cout.fill(‘0’);

//выдаем значения переменных на экран

cout<<”a=”;

cout<<” b=”;

//задаем общую длину для числа

Регулировка ширины поля (width) и заполнителя (fill) имеет смысл при выдачи данных в таблицу. Чаще всего можно обойтись только настройкой precision.

Очистка экрана

Язык С++ имеет функцию, позволяющую очищать экран от текстовой информации. Эта функция имеет вид:

Данная функция находится в заголовочном файле conio.h. Поэтому для ее использования данный файл должен быть подключен с помощью директивы:

#include

Организация паузы для просмотра результата

После выполнения программы обычно происходит автоматичский возврат в окно с исходным текстом. Это не позволяет просмотреть результат, который программа выдает на экран. Выходом из этой ситуации может быть использование клавиш Alt+F5, при нажатии на которые происходит скрытие окна с кодом программы. Повторное нажатие на эти клавиши возвращает окно с кодом на экран.

Однако, если создать исполняемый EXE файл, то использовать эти клавиши будет невозможно и результат останется невидимым для пользователя.

Для решения данной проблемы в конце программы можно добавлять функцию, которая приостанавливает работу до нажатия любой клавиши. Эта функция имеет вид:

getch ();

Данная функция находится в заголовочном файле conio.h. Поэтому для ее использования данный файл должен быть подключен с помощью директивы:

#include

Оператор ввода данных с клавиатуры

Для вода данных с клавиатуры в С++ имеется оператор:

cin>>переменная;

Данный оператор приостанавливает работу программы и ждет пока пользователь не введет значение переменной и на нажмет ENTER.

C помощью одного оператора можно ввести значения нескольких переменных. Для этого оператор записывают в виде:

cin>>переменная1>>переменная2>>. . .>>переменнаяn;

При запуске программы каждое значение вводится через пробел и в конце нажимают ENTER.

Оператор COUT находится в заголовочном файле iostream.h. Поэтому для его использования данный файл нужно подключить с помощью директивы:

#include (начало)

6. Пример программы на С++

Для демонстрации решим одну задачу. Составить программу для нахождения значения функции:

Программа может иметь вид:

//подключаем файл для организации ввода/вывода

#include

//подключаем файл для использования алгебраических функций

#include

//подключаем файл для вызова функции очистки экрана

#include

//заголовок главной программы

//описываем три переменных вещественного типа

//очищаем экран

//выдаем текстовую подсказку на экран

cout<<"Введите значения a и b:";

//запрашиваем ввод с клавиатуры двух переменных: a и b

//считаем значение функции

c=sin(a)+pow(cos(b),2);

//устанавливаем точность вывода результата 3 знака полсе запятой

cout.precision(3);

//выводим результат на экран

cout<<"Функция равна:"<

cout<<"Для продолжения нажмите любую клавишу. . .";

//делаем паузу для просмотра результата

//завершаем работу главной программы

Определение
Функцией y = f(x) называется закон (правило, отображение), согласно которому, каждому элементу x множества X ставится в соответствие один и только один элемент y множества Y .

Множество X называется областью определения функции .
Множество элементов y ∈ Y , которые имеют прообразы во множестве X , называется множеством значений функции (или областью значений ).

Область определения функции иногда называют множеством определения или множеством задания функции.

Элемент x ∈ X называют аргументом функции или независимой переменной .
Элемент y ∈ Y называют значением функции или зависимой переменной .

Само отображение f называется характеристикой функции .

Характеристика f обладает тем свойством, что если два элемента и из множества определения имеют равные значения: , то .

Символ, обозначающий характеристику, может совпадать с символом элемента значения функции. То есть можно записать так: . При этом стоит помнить, что y - это элемент из множества значений функции, а - это правило, по которому для элемента x ставится в соответствие элемент y .

Сам процесс вычисления функции состоит из трех шагов. На первом шаге мы выбираем элемент x из множества X . Далее, с помощью правила , элементу x ставится в соответствие элемент множества Y . На третьем шаге этот элемент присваивается переменной y .

Частным значением функции называют значение функции при выбранном (частном) значении ее аргумента.

Графиком функции f называется множество пар .

Сложные функции

Определение
Пусть заданы функции и . Причем область определения функции f содержит множество значений функции g . Тогда каждому элементу t из области определения функции g соответствует элемент x , а этому x соответствует y . Такое соответствие называют сложной функцией : .

Сложную функцию также называют композицией или суперпозицией функций и иногда обозначают так: .

В математическом анализе принято считать, что если характеристика функции обозначена одной буквой или символом, то она задает одно и то же соответствие. Однако, в других дисциплинах, встречается и другой способ обозначений, согласно которому отображения с одной характеристикой, но разными аргументами, считаются различными. То есть отображения и считаются различными. Приведем пример из физики. Допустим мы рассматриваем зависимость импульса от координаты . И пусть мы имеем зависимость координаты от времени . Тогда зависимость импульса от времени является сложной функцией . Но ее, для краткости, обозначают так: . При таком подходе и - это различные функции. При одинаковых значениях аргументов они могут давать различные значения. В математике такое обозначение не принято. Если требуется сокращение, то следует ввести новую характеристику. Например . Тогда явно видно, что и - это разные функции.

Действительные функции

Область определения функции и множество ее значений могут быть любыми множествами.
Например, числовые последовательности - это функции, областью определения которых является множество натуральных чисел, а множеством значений - вещественные или комплексные числа.
Векторное произведение тоже функция, поскольку для двух векторов и имеется только одно значение вектора . Здесь областью определения является множество всех возможных пар векторов . Множеством значений является множество всех векторов.
Логическое выражение является функцией. Ее область определения - это множество действительных чисел (или любое множество, в котором определена операция сравнения с элементом “0”). Множество значений состоит из двух элементов - “истина” и “ложь”.

В математическом анализе большую роль играют числовые функции.

Числовая функция - это функция, значениями которой являются действительные или комплексные числа.

Действительная или вещественная функция - это функция, значениями которой являются действительные числа.

Максимум и минимум

Действительные числа имеют операцию сравнения. Поэтому множество значений действительной функции может быть ограниченным и иметь наибольшее и наименьшее значения.

Действительная функция называется ограниченной сверху (снизу) , если существует такое число M , что для всех выполняется неравенство:
.

Числовая функция называется ограниченной , если существует такое число M , что для всех :
.

Максимумом M (минимумом m ) функции f , на некотором множестве X называют значение функции при некотором значении ее аргумента , при котором для всех ,
.

Верхней гранью или точной верхней границей действительной, ограниченной сверху функции называют наименьшее из чисел, ограничивающее область ее значений сверху. То есть это такое число s , для которого для всех и для любого , найдется такой аргумент , значение функции от которого превосходит s′ : .
Верхняя грань функции может обозначаться так:
.

Верхней гранью неограниченной сверху функции

Нижней гранью или точной нижней границей действительной, ограниченной снизу функции называют наибольшее из чисел, ограничивающее область ее значений снизу. То есть это такое число i , для которого для всех и для любого , найдется такой аргумент , значение функции от которого меньше чем i′ : .
Нижняя грань функции может обозначаться так:
.

Нижней гранью неограниченной снизу функции является бесконечно удаленная точка .

Таким образом, любая действительная функция, на не пустом множестве X , имеет верхнюю и нижнюю грани. Но не всякая функция имеет максимум и минимум.

В качестве примера рассмотрим функцию , заданную на открытом интервале .
Она ограничена, на этом интервале, сверху значением 1 и снизу - значением 0 :
для всех .
Эта функция имеет верхнюю и нижнюю грани:
.
Но она не имеет максимума и минимума.

Если мы рассмотрим туже функцию на отрезке , то она на этом множестве ограничена сверху и снизу, имеет верхнюю и нижнюю грани и имеет максимум и минимум:
для всех ;
;
.

Монотонные функции

Определения возрастающей и убывающей функций
Пусть функция определена на некотором множестве действительных чисел X . Функция называется строго возрастающей (строго убывающей)
.
Функция называется неубывающей (невозрастающей) , если для всех таких что выполняется неравенство:
.

Определение монотонной функции
Функция называется монотонной , если она неубывающая или невозрастающая.

Многозначные функции

Пример многозначной функции. Различными цветами обозначены ее ветви. Каждая ветвь является функцией.

Как следует из определения функции, каждому элементу x из области определения, ставится в соответствие только один элемент из множества значений. Но существуют такие отображения, в которых элемент x имеет несколько или бесконечное число образов.

В качестве примера рассмотрим функцию арксинус : . Она является обратной к функции синус и определяется из уравнения:
(1) .
При заданном значении независимой переменной x , принадлежащему интервалу , этому уравнению удовлетворяет бесконечно много значений y (см. рисунок).

Наложим на решения уравнения (1) ограничение. Пусть
(2) .
При таком условии, заданному значению , соответствует только одно решение уравнения (1). То есть соответствие, определяемое уравнением (1) при условии (2) является функцией.

Вместо условия (2) можно наложить любое другое условие вида:
(2.n) ,
где n - целое. В результате, для каждого значения n , мы получим свою функцию, отличную от других. Множество подобных функций является многозначной функцией . А функция, определяемая из (1) при условии (2.n) является ветвью многозначной функцией .

Это совокупность функций, определенных на некотором множестве.

Ветвь многозначной функции - это одна из функций, входящих в многозначную функцию.

Однозначная функция - это функция.

Использованная литература:
О.И. Бесов. Лекции по математическому анализу. Часть 1. Москва, 2004.
Л.Д. Кудрявцев. Курс математического анализа. Том 1. Москва, 2003.
С.М. Никольский. Курс математического анализа. Том 1. Москва, 1983.

Похожие публикации