Технические характеристики Возможности usb. Протокол шины USB Контрольные передачи и каналы сообщений

Высокая скорость обмена (full-speed signaling bit rate) - 12 Мб/с - Максимальная длина кабеля для высокой скорости обмена - 5 м - Низкая скорость обмена (low-speed signaling bit rate) - 1.5 Мб/с - Максимальная длина кабеля для низкой скорости обмена - 3 м - Максимум подключенных устройств (включая размножители) - 127 - Возможно подключение устройств с различными скоростями обмена - Отсутствие необходимости в установке пользователем дополнительных элементов, таких как терминаторы для SCSI - Напряжение питания для периферийных устройств - 5 В - Максимальный ток потребления на одно устройство - 500 mA

Распайка разъема usb 1.1 и 2.0

Сигналы USB передаются по двум проводам экранированного четырёхпроводного кабеля.

Здесь:

GND - цепь «корпуса» для питания периферийных устройств V BUS - +5V также для цепей питания Шина D+ предназначена для передачи данных

Шина D- для приема данных.

Недостатки usb 2.0

Хотя максимальная скорость передачи данных USB 2.0 составляет 480 Мбит/с (60 Мбайт/с), в реальной жизни достичь таких скоростей нереально (~33,5 Мбайт/сек на практике). Это объясняется большими задержками шины USB между запросом на передачу данных и собственноначалом передачи. Например, шина FireWire, хотя и обладает меньшей пиковой пропускной способностью 400 Мбит/с, что на 80 Мбит/с (10 Мбайт/с) меньше, чем у USB 2.0, в реальности позволяет обеспечить бо́льшую пропускную способность для обмена данными с жёсткимидисками и другими устройствами хранения информации. В связи с этим разнообразные мобильные накопители уже давно «упираются»в недостаточную практическую пропускную способность USB 2.0.

Самым существенным преимуществом USB 3.0 является более высокая скорость (до 5 Гбит/с), которая в 10 раз выше скорости более устаревшего порта. У нового интерфейса улучшено энергосбережение. Это позволяет накопителю переходить в спящий режим при бездействии. Можно осуществить двустороннюю передачу данных одновременно. Это даст более высокую скорость, если на один порт подключить несколько устройств (разветвить порт). Разветвить можно с помощью хаба (хаб – устройство, которое из одного порта разветвляет на 3-6 портов). Вот если подключить хаб к порту USB 3.0, а к хабу подключите несколько устройств (например, флешек) и осуществите одновременную передачу данных, то вы увидите, что скорость будет значительно больше, чем было при интерфейсе USB 2.0. Есть характеристика, которая может являться плюсом и минусом. В интерфейсе USB 3.0 была повышена сила тока до 900 мА, а USB 2.0 работает с силой тока в 500 мА. Это будет плюсом для тех устройств, которые были адаптированы под USB 3.0, ну а небольшой минус состоит в том, что может возникать риск при подзарядке более слабых устройств, как телефон. Физическим недостатком нового интерфейса является размеры кабеля. Для поддержания высокой скорости кабель стал более толстым и по длине более коротким (не может быть длиннее 3 метров), чем USB 2.0. Следует отметить важное, что устройства с разными USB интерфейсами будут работать хорошо и не должно возникнуть проблем. Но не думайте, что скорость «разгонится», если вы подключите USB 3.0 к более устаревшему порту, или подключите к новому порту кабель устаревшего интерфейса. Скорость передачи данных будет равна скорости самого слабого порта.

Обеспечивает обмен данными между хостом и устройством. На протокольном уровне решаются такие задачи, как обеспечение достоверности и надежности передачи, управление потоком. Весь трафик на шине USB передается посредством транзакций, в каждой транзакции возможен обмен только между хостом и адресуемым устройством (его конечной точкой).

Все транзакции (обмены) с устройствами USB состоят из двух-трех пакетов, типовые последовательности пакетов в транзакциях приведены на рис. 1. Каждая транзакция планируется и начинается по инициативе хост-контроллера, который посылает пакет-маркер транзакции (token packet). Маркер транзакции описывает тип и направление передачи, адрес выбранного устройства USB и номер конечной точки. Адресуемое маркером устройство распознает свой адрес и готовится к обмену. Источник данных, определенный маркером, передает пакет данных. На этом этапе транзакции, относящиеся к изохронным передачам, завершаются — здесь нет подтверждения приема пакетов. Для остальных типов передач работает механизм подтверждения, обеспечивающий гарантированную доставку данных. Форматы пакетов приведены на рис. 2, типы пакетов — в таблице. Во всех полях пакетов, кроме поля CRC, данные передаются младшим битом вперед (на временных диаграммах младший бит изображается слева). Пакет начинается с синхропоследовательности Sync и завершается признаком конца — EOP. Тип пакета определяется полем PID. Назначение остальных полей раскрывается далее. Длина полей Sync и EOP указана для передач на FS/LS, для высокоскоростных передач поле Sync удлинено до 32 битовых интервалов, а EOP до 8 (в пакетах SOF поле EOP имеет длину 40 бит).

Все принимаемые пакеты проверяются на наличие ошибок, что позволяют принятые форматы пакета и некоторые соглашения:

  • пакет начинается с синхронизирующей последовательности, за которой следует его идентификатор PID (Packet Identificator). За идентификатором следует его инверсная копия — Check. Несовпадение двух копий считается признаком ошибки;
  • тело пакета (все поля пакета, исключая PID и признак EOP) защищается CRCкодом: 5-битным для пакетов-маркеров, 16-битным — для пакетов данных. Несовпадение CRC с ожидаемым значением считается признаком ошибки;
  • пакет завершается специальным сигналом EOP; если в пакете оказывается не целое число байт, он считается ошибочным. Ложный EOP, даже на границе байта, не позволит принять пакет из-за практически неизбежной в данной ситуации ошибки по CRC-контролю;
  • на физический уровень (в шину) данные пакета передаются с использованием вставки бит (bit stuffing, после шести единичных бит вставляется нолик), что предотвращает потерю битовой синхронизации при монотонном сигнале. Прием более шести единичных бит подряд считается ошибкой (на HS — признаком конца кадра).

Обнаружение любой из перечисленных ошибок в пакете заставляет приемник считать его недействительным. На пакеты, принятые с ошибкой, ни устройство, ни хост-контроллер никак не отвечают. При изохронной передаче данные недействительного пакета должны просто игнорироваться (они теряются); для остальных типов передач используются средства обеспечения надежной доставки.

Для обнаружения отсутствия ответа партнера на пакет каждое устройство имеет счетчик тайм-аута, который прерывает ожидание ответа по истечении некоторого времени. В USB имеется ограничение на время оборота по шине (roundtrip time): время от конца EOP сформированного пакета до получения начала ответного пакета. Для конечного устройства (и хост-контроллера) нормируется максимальная задержка ответа (response time) от конца увиденного EOP до введения им начала пакета. Для хабов нормируется задержка трансляции пакетов, для кабелей — задержка распространения сигналов. Счетчик тайм-аута должен учитывать максимальную задержку, возможную для допустимой конфигурации шины: до 5 промежуточных хабов, до 5 метров каждый кабель. Допустимое значение тайм-аута, выражаемое в битовых интервалах (bt), зависит от скорости:

  • для скоростей FS/LS задержка, вводимая одним кабельным сегментом, по сравнению с битовым интервалом (bt) невелика. Исходя из этого в USB 1.0 для расчета допустимых задержек принимается следующая модель. На каждый кабельный сегмент отводится допустимая задержка 30 нс, на хаб — 40 нс. Таким образом, пять промежуточных хабов со своими кабелями вносят во время двойного оборота задержку 700 нс, что на FS соответствует примерно 8,5 bt. Для FS-устройства задержка ответа не должна превышать 6,5 bt (а с учетом его кабеля — 7,5 bt). Исходя из этого спецификация предписывает передатчикам на FS использовать счетчик тайм-аута на 16-18 bt;
  • на скорости HS задержка в кабельном сегменте много больше битового интервала, и в USB 2.0 модель расчета несколько иная. Здесь на каждый кабельный сегмент отводится по 26 нс, а на хаб — по 4 нс плюс 36 bt. Таким образом, двукратное прохождение 6 кабельных сегментов (2×6×26 = 312 нс ≈ 150 bt) и пять хабов (2×5×4 = 40 нс ≈ 19 bt плюс 2×5×36 = 360 bt) занимает до 529 bt. Задержка ответа устройства допустима до 192 bt, а полная задержка с учетом кабелей и хабов будет до 721 bt. Исходя из этого спецификация предписывает передатчикам на HS использовать счетчик тайм-аута на 736-816 bt.

У хост-контроллера с каждой конечной точкой всех устройств связан свой счетчик ошибок, обнуляемый при планировании каждой транзакции. Этот счетчик считает все протокольные ошибки (включая и ошибки по тайм-ауту), и если число ошибок превышает порог (3), то канал с данной конечной точкой останавливается, о чем уведомляется его владелец (драйвер устройства или USBD). До превышения порога хост отрабатывает ошибки для неизохронных передач попытками повтора транзакций, без уведомления клиентского ПО. Изохронные передачи не повторяются, об обнаружении ошибок хост сообщает сразу.

Для подтверждений приема, управления потоком и сигнализации ошибок используются пакеты квитирования (handshake packets). Из этих пакетов хост-контроллер может посылать устройству только пакет ACK, подтверждающий безошибочный прием пакета данных. Устройство для ответа хосту использует следующие пакеты квитирования:

ACK — подтверждение (положительное) успешного выполнения транзакции вывода или управления;
NAK — отрицательное подтверждение, является признаком неготовности устройства к выполнению данной транзакции (нет данных для передачи хосту, отсутствует место в буфере для приема, не завершена операция управления). Это является нормальным ответом, о котором не узнает никто, кроме хост-контроллера, вынужденного повторить данную транзакцию позже. В транзакциях ввода ответ NAK устройство дает вместо пакета данных, если они не готовы;
STALL — сообщение о серьезной ошибке, которое означает, что без специального программного вмешательства работа с данной конечной точкой становится невозможной. Этот ответ доводится до сведения и драйвера USBD, отменяющего дальнейшие транзакции с этой точкой, и до клиентского драйвера, от которого и ожидается программное вмешательство, разблокирующее точку. В управляющих транзакциях (Control) ответ STALL означает невыполнимость данного запроса; разблокирования точки при этом не требуется.

Управление потоком при выводе данных, основанное только на возможности ответа NAK в случае неготовности устройства, весьма неэффективно расходует пропускную способность шины: чтобы убедиться в неготовности устройства, по шине впустую передается большой пакет данных. В USB 2.0 этой неприятности в транзакциях Bulk-OUT и Control избегают, применив протокол проб (Ping Protocol). Хост может опросить готовность устройства к приему пакета максимального размера, послав ему маркер-пробник PING. На этот маркер устройство может ответить подтверждением ACK (при готовности) или NAK (если не способно принять пакет максимального размера). Отрицательный ответ заставит хост повторить пробу позже, положительный разрешит ему выполнить транзакцию вывода данных. На транзакцию вывода после положительного ответа на пробу ответы устройства более разнообразны:

  • ACK означает успешный прием и готовность принять следующий полноразмерный пакет;
  • NYET означает успешный прием, но неготовность к следующему пакету;
  • NAK — неожиданный ответ (он противоречит успеху пробы), но он возможен, если устройство внезапно стало временно не готово.

Высокоскоростное устройство в дескрипторах конечных точек сообщает о возможной интенсивности посылок NAK: поле bInterval для конечных точек типа Bulk и Control указывает число микрокадров, приходящееся на один NAK (0 означает, что устройство никогда не ответит NAK’ом на транзакцию вывода).

Передачи массивов, прерываний и управления обеспечивают надежную доставку данных. После успешного приема пакета приемник данных посылает подтверждение — пакет квитирования ACK. Если приемник данных обнаружил ошибку, пакет игнорируется и никакого ответа на него не посылается. Источник данных считает, что очередной пакет передан успешно, когда получает от приемника подтверждение ACK. Если подтверждение не приходит, то в следующей транзакции источник повторяет посылку того же пакета. Однако пакет подтверждения может быть потерян из-за помехи; чтобы в этом случае повторная посылка пакета приемником не воспринималась как следующая порция данных, пакеты данных нумеруются. Нумерация ведется по модулю 2 (1-битный номер): пакеты делятся на четные (с идентификатором DATA0) и нечетные (DATA1). Для каждой конечной точки (кроме изохронных) у хоста и в устройстве имеются биты-переключатели (Toggle Bit), их начальные состояния тем или иным способом согласуются. В транзакциях IN и OUT передаются и ожидаются пакеты данных с идентификаторами DATA0 или DATA1, соответствующими текущему состоянию этих бит. Приемник данных переключает свой бит в случае безошибочного приема данных с ожидаемым идентификатором, источник данных — по приему подтверждения. Если приемник получает безошибочный пакет с неожидаемым идентификатором, он посылает подтверждение ACK, но данные пакета игнорирует, поскольку этот пакет — повторная посылка уже принятых данных.

Транзакции для различных типов передач имеют протокольные различия, обусловленные гарантированием или не гарантированием пропускной способности, времени отклика, надежности доставки и синхронизированности ввода и вывода. В зависимости от этих характеристик в транзакциях используются те или иные из вышеописанных протокольных механизмов. Отметим, что обнаружение ошибок передачи работает во всех транзакциях, так что данные, принятые с ошибкой, всегда игнорируются. Какие именно протокольные механизмы используются в текущей транзакции, «знает» и хост-контроллер (по ранее полученному дескриптору конечной точки), и устройство USB , в котором эта конечная точка реализована.

Изохронные транзакции обеспечивают гарантированную скорость обмена, но не обеспечивают надежности доставки. По этой причине в протоколе отсутствуют подтверждения, поскольку повтор пакета приведет к сбою в планах доставки данных. Управление потоком, основанное на подтверждениях, отсутствует — устройство обязано выдерживать темп обмена, заявленный в дескрипторе изохронной конечной точки.

Транзакции изохронного вывода состоят из двух пакетов, посылаемых хост-контроллером, — маркера OUT и пакета данных DATA. В транзакции ввода хост посылает маркер IN, на который устройство отвечает пакетом данных, возможно, и с нулевой длиной поля данных (если нет готовых данных). Любой другой ответ устройства (как и «молчание») хостом расценивается как ошибка, приводящая к остановке данного канала.

При изохронном обмене имеется контроль достоверности (отбрасывание пакетов с ошибками) и целостности данных (обнаружение факта пропажи пакета). Контроль целостности основан на строгой детерминированности темпа обмена — в соответствии со своим дескриптором точка ожидает транзакцию с периодом 2bInterval-1 микрокадров. Для обычной изохронной конечной точки в микрокадре возможна лишь одна транзакция, и ошибка при приеме пакета выражается в отсутствии принятых данных в микрокадре, в котором они ожидаются. Таким образом, нумерация пакетов (переключатель Toggle Bit) не требуется. Полноскоростные устройства и хостконтроллеры должны посылать пакеты только типа DATA01. Для широкополосных изохронных конечных точек (USB 2.0) в каждом микрокадре возможна передача до трех пакетов данных. Любой из этих пакетов может потеряться, и для обнаружения этой ситуации требуется нумерация пакетов внутри микрокадра. Для этой нумерации введено два новых типа пакетов данных: DATA2 и MDATA. Многообразие типов пакетов кроме нумерации позволяет еще и информировать партнера по связи о своих планах на данный микрокадр. В транзакциях IN идентификатором пакета устройство указывает, сколько еще пакетов оно собирается выдать в том же микрокадре, что позволяет хосту не делать лишних попыток ввода. Так, если в микрокадре передается один пакет, то это будет DATA0; если два — последовательность будет DATA1, DATA0; три — DATA2, DATA1, DATA0. В транзакциях OUT для вывода не последнего пакета в микрокадре используется пакет MDATA (More Data), а идентификатор последнего пакета показывает, сколько было до него передано пакетов. Так, при одной транзакции вывода используется пакет DATA0, при двух — последовательность MDATA, DATA1, при трех — MDATA, MDATA, DATA2. Во всех транзакциях, кроме последней в микрокадре, должны использоваться пакеты максимального размера. Отметим, что между широкополосными транзакциями в микрокадре могут вклиниваться другие транзакции.

В конце 2008 года. Как и можно было ожидать, новый стандарт увеличил пропускную способность, хотя прирост не такой значительный, как 40-кратное увеличение скорости при переходе от USB 1.1 на USB 2.0. В любом случае, 10-кратное повышение пропускной способности можно приветствовать. USB 3.0 поддерживает максимальную скорость передачи 5 Гбит/с. Пропускная способность почти в два раза превышает современный стандарт Serial ATA (3 Гбит/с с учётом передачи информации избыточности).

Логотип USB 3.0

Каждый энтузиаст подтвердит, что интерфейс USB 2.0 является основным «узким местом» современных компьютеров и ноутбуков, поскольку его пиковая «чистая» пропускная способность составляет от 30 до 35 Мбайт/с. Но у современных 3,5″жёстких дисков для настольных ПК скорость передачи уже превысила 100 Мбайт/с (появляются и 2,5″ модели для ноутбуков, приближающиеся к данному уровню). Скоростные твёрдотельные накопители успешно превзошли порог 200 Мбайт/с. А 5 Гбит/с (или 5120 Мбит/с) соответствует 640 Мбайт/с.

Мы не думаем, что в обозримом будущем жёсткие диски приблизятся к уровню 600 Мбайт/с, но следующие поколения твёрдотельных накопителей могут превысить это число уже через несколько лет. Увеличение пропускной способности становится всё более важным, поскольку количество информации увеличивается, соответственно, растёт и время её резервирования. Чем быстрее работает хранилище, тем меньше будет время резервирования, тем проще будет сделать «окна» в расписании резервирования.

Таблица сравнения скоростных характеристик USB 1.0 – 3.0

Цифровые видеокамеры сегодня могут записывать и хранить гигабайты видеоданных. Доля HD-видеокамер увеличивается, а им требуются более ёмкие и быстрые хранилища для записи большого количества данных. Если использовать USB 2.0, то на передачу нескольких десятков гигабайт видеоданных на компьютер для монтажа потребуется значительное время. USB Implementers Forum считает, что пропускная способность останется принципиально важной, и USB 3.0 будет достаточно для всех потребительских устройств на протяжении ближайших пяти лет.

Кодирование 8/10 бит

Чтобы гарантировать надёжную передачу данных интерфейс USB 3.0 использует кодирование 8/10 бит, знакомое нам, например, по Serial ATA. Один байт (8 бит) передаётся с помощью 10-битного кодирования, что улучшает надёжность передачи в ущерб пропускной способности. Поэтому переход с битов на байты осуществляется с соотношением 10:1 вместо 8:1.

Сравнение пропускной способности USB 1.x – 3.0 и конкурентов

Режимы энергосбережения

Конечно, основной целью интерфейса USB 3.0 является повышение доступной пропускной способности , однако новый стандарт эффективно оптимизирует энергопотребление . Интерфейс USB 2.0 постоянно опрашивает доступность устройств, на что расходуется энергия. Напротив, у USB 3.0 есть четыре состояния подключения, названные U0-U3. Состояние подключения U0 соответствует активной передаче данных, а U3 погружает устройство в «сон».

Если подключение бездействует, то в состоянии U1 будут отключены возможности приёма и передачи данных. Состояние U2 идёт ещё на шаг дальше, отключая внутренние тактовые импульсы. Соответственно, подключённые устройства могут переходить в состояние U1 сразу же после завершения передачи данных, что, как предполагается, даст ощутимые преимущества по энергопотреблению, если сравнивать с USB 2.0.

Больший ток

Кроме разных состояний энергопотребления стандарт USB 3.0 отличается от USB 2.0 и более высоким поддерживаемым током . Если USB 2.0 предусматривал порог тока 500 мА, то в случае нового стандарта ограничение было сдвинуто до планки 900 мА. Ток при инициации соединения был увеличен с уровня 100 мА у USB 2.0 до 150 мА у USB 3.0. Оба параметра весьма важны для портативных жёстких дисков, которые обычно требуют чуть большие токи. Раньше проблему удавалось решить с помощью дополнительной вилки USB, получая питание от двух портов, но используя только один для передачи данных, пусть даже это нарушало спецификации USB 2.0.

Новые кабели, разъёмы, цветовое кодирование

Стандарт USB 3.0 обратно совместим с USB 2.0 , то есть вилки кажутся такими же, как и обычные вилки типа A. Контакты USB 2.0 остались на прежнем месте, но в глубине разъёма теперь располагаются пять новых контактов. Это означает, что вам нужно полностью вставлять вилку USB 3.0 в порт USB 3.0, чтобы удостовериться в режиме работы USB 3.0, для которого требуются дополнительные контакты. Иначе вы получите скорость USB 2.0. USB Implementers Forum рекомендует производителям использовать цветовое кодирование Pantone 300C на внутренней части разъёма.

Ситуация получилась схожей и для USB-вилки типа B, хотя различия визуально более заметны. Вилку USB 3.0 можно определить по пяти дополнительным контактам .

USB 3.0 не использует волоконную оптику , поскольку она слишком дорога для массового рынка. Поэтому перед нами старый добрый медный кабель. Однако теперь у него будет девять, а не четыре провода. Передача данных осуществляется по четырём из пяти дополнительных проводов в дифференциальном режиме (SDP–Shielded Differential Pair). Одна пара проводов отвечает за приём информации, другая – за передачу. Принцип работы похож на Serial ATA, при этом устройства получают полную пропускную способность в обоих направлениях. Пятый провод – «земля».

История появления и развития стандартов Universal Serial Bus (USB)

    До появления первой реализации шины USB стандартная комплектация персонального компьютера включала один параллельный порт, обычно для подключения принтера (порт LPT), два последовательных коммуникационных порта (порты COM), обычно для подключения мыши и модема, и один порт для джойстика (порт GAME). Такая конфигурация была вполне приемлемой на заре появления персональных компьютеров, и долгие годы являлась практическим стандартом для производителей оборудования. Однако прогресс не стоял на месте, номенклатура и функциональность внешних устройств постоянно совершенствовались, что в конце концов привело к необходимости пересмотра стандартной конфигурации, ограничивающей возможность подключения дополнительных периферийных устройств, которых, с каждым днем становилось все больше и больше.

    Попытки увеличения количества стандартных портов ввода-вывода не могли привести к кардинальному решению проблемы, и возникла необходимость разработки нового стандарта, который бы обеспечивал простое, быстрое и удобное подключение большого количества разнообразных по назначению периферийных устройств к любому компьютеру стандартной конфигурации, что, в конце концов, привело к появлению универсальной последовательной шины Universal Serial Bus (USB)

    Первая спецификация последовательного интерфейса USB (Universal Serial Bus) , получившая название USB 1.0 , появилась в 1996 г. , усовершенствованная версия на ее основе, USB 1.1 - в 1998 г. Пропускная способность шин USB 1.0 и USB 1.1 - до 12 Мбит/с (реально до 1 мегабайта в секунду) была вполне достаточной для низкоскоростных периферийных устройств, вроде аналогового модема или компьютерной мышки, однако недостаточной для устройств с высокой скоростью передачи данных, что являлось главным недостатком данной спецификации. Однако, практика показала, что универсальная последовательная шина - это очень удачное решение, принятое практически всеми производителями компьютерного оборудования в качестве магистрального направления развития компьютерной периферии.

В 2000 г. появилась новая спецификация - USB 2.0 , обеспечивающая уже скорость передачи данных до 480 Мбит/с (реально до 32 мегабайт в секунду). Спецификация предполагала полную совместимость с предыдущим стандартом USB 1.X и вполне приемлемое быстродействие для большинства периферийных устройств. Начинается бум производства устройств, оснащенных интерфейсом USB. "Классические" интерфейсы ввода - вывода были полностью вытеснены и стали экзотикой. Однако, для части высокоскоростного периферийного оборудования даже удачная спецификация USB 2.0 оставалась узким местом, что требовало дальнейшего развития стандарта.

В 2005 г. была анонсирована спецификация для беспроводной реализации USB - Wireless USB - WUSB , позволяющей выполнять беспроводное подключение устройств на расстоянии до 3-х метров с максимальной скоростью передачи данных 480 Мбит/сек, и на расстоянии до 10 метров с максимальной скоростью 110 Мбит/сек. Спецификация не получила бурного развития и не решала задачу повышения реальной скорости передачи данных.

В 2006 г. была анонсирована спецификация USB-OTG (USB O n-T he-G o, благодаря которой стала возможной связь двух USB-устройств друг с другом без отдельного USB-хоста. Роль хоста в данном случае выполняет одно из периферийных устройств. Смартфонам, цифровым фотоаппаратам и прочим мобильным устройствам приходится быть как хостом, так и периферийным устройством. Например, при подключении по USB к компьютеру фотоаппарата, он является периферийным устройством, а при подключении принтеру он является хостом. Поддержка спецификации USB-OTG постепенно стала стандартом для мобильных устройств.

В 2008 г. появилась окончательная спецификация нового стандарта универсальной последовательной шины - USB 3.0 . Как и в предыдущих версиях реализации шины, предусмотрена электрическая и функциональная совместимость с предыдущими стандартами. Скорость передачи данных для USB 3.0 увеличилась в 10 раз - до 5 Гбит/сек. В интерфейсном кабеле добавились 4 дополнительные жилы, и их контакты были выведены отдельно от 4-х контактов предыдущих стандартов, в дополнительном контактном ряду. Кроме повышенной скорости передачи данных шина USB характеризуется еще и увеличившейся, по сравнению с предыдущими стандартами, силой тока в цепи питания. Максимальная скорость передачи данных по шине USB 3.0 стала приемлемой практически для любого, массово производимого периферийного компьютерного оборудования.

В 2013 году была принята спецификация следующего интерфейса - USB 3.1 , скорость передачи данных которого может достигать 10 Гбит/с. Кроме того, появился компактный 24-контактный разъём USB Type-C , который является симметричным, позволяя вставлять кабель любой стороной.

После выхода стандарта USB 3.1 организация USB Implementers Forum (USB-IF) объявила, что разъёмы USB 3.0 со скоростью до 5 Гбит/с (SuperSpeed) теперь будут классифицироваться как USB 3.1 Gen 1, а новые разъёмы USB 3.1 со скоростью до 10 Гбит/с (SuperSpeed USB 10Gbps) - как USB 3.1 Gen 2. Стандарт USB 3.1 обратно совместим с USB 3.0 и USB 2.0.

В 2017 году организация USB Implementers Forum (USB-IF) опубликовала спецификацию USB 3.2 . Максимальная скорость передачи составляет 10 Гбит/с. Однако в USB 3.2 предусмотрена возможность агрегации двух подключений (Dual-Lane Operation ), позволяющая увеличить теоретическую пропускную способность до 20 Гбит/с. Реализация этой возможности сделана опциональной, то есть ее поддержка на уровне оборудования будет зависеть от конкретного производителя и технической необходимости, которая отличается, например, для принтера и переносного жесткого диска. Возможность реализации данного режима предусмотрена только при использовании USB Type-C .

www.usb.org - Документация по спецификациям USB для разработчиков на английском языке.

Нельзя не отметить, что существовала, и пока еще существует, альтернатива шине USB. Еще до ее появления, компания Apple разработала спецификацию последовательной шины FireWire (другое название - iLink ), которая в 1995 г. была стандартизована Американским Институтом инженеров по электротехнике и электронике (IEEE) под номером 1394. Шина IEEE 1394 может работать в трех режимах: со скоростью передачи данных до 100, 200 и 400 Мбит/с. Однако, по причине высокой стоимости и более сложной реализации, чем USB, эта разновидность высокоскоростной последовательной шины, большого распространения не получила, и постепенно вытесняется USB 2.0 – USB 3.2.

Общие принципы работы периферийных устройств Universal Serial Bus (USB)

    Интерфейс USB оказался настолько удачным решением, что им оснастили практически все классы периферийных устройств, от мобильного телефона до веб-камеры или переносного жесткого диска. Наибольшее распространение получили (пока) устройства с поддержкой USB 2.0. Однако, USB 3.0 – 3.1 более востребован для высокоскоростных устройств, где он становится основным, постепенно вытесняя USB 2.0.

    Периферийные устройства, с поддержкой USB при подключении к компьютеру автоматически распознаются системой (в частности, программное обеспечение драйвера и пропускную способность шины), и готовы к работе без вмешательства пользователя. Устройства с небольшим энергопотреблением (до 500мА) могут не иметь своего блока питания и запитываться непосредственно от шины USB.

    Благодаря использованию USB отпадает необходимость снятия корпуса компьютера для установки дополнительных периферийных устройств, а также необходимость выполнения сложных настроек при их установке.

    USB устраняет проблему ограничения числа подключаемых устройств. При использовании USB с компьютером может одновременно работать до 127 устройств.

    USB позволяет выполнять "горячее" (оперативное) подключение. При этом не требуется предварительное выключение компьютера, затем подключение устройства, перезагрузка компьютера и настройка установленных периферийных устройств. Для отключения периферийного устройства не требуется выполнять процедуру, обратную описанной.

Проще говоря, USB позволяет фактически реализовать все преимущества современной технологии "plug and play" ("включай и работай"). Устройства, разработанные для USB 1.x могут работать с контроллерами USB 2.0. и USB 3.0

При подключении периферийного устройства вырабатывается аппаратное прерывание и управление получает драйвер HCD (Host Controller Driver ) контроллера USB (USB Host Controller - UHC ), который на сегодняшний день интегрирован во все выпускаемые чипсеты материнских плат. Он опрашивает устройство и получает от него идентификационную информацию, исходя из которой управление передается драйверу, обслуживающему данный тип устройств. UHC контроллер имеет корневой (root) концентратор (Hub), обеспечивающий подключение к шине устройств USB.

Концентратор (USB HUB).

Точки подключения называются портами . К порту, в качестве устройства, может быть подключен другой концентратор. Каждый концентратор имеет исходящий порт (upstream port ), соединяющие его с главным контроллером и нисходящие порты (downstream port ) для подключения периферийных устройств. Концентраторы могут обнаруживать, выполнять соединение и отсоединение в каждом порте нисходящей связи и обеспечивать распределение напряжения питания в устройства нисходящего соединения. Каждый из портов нисходящей связи может быть индивидуально активизирован и сконфигурирован на полной или низкой скорости. Концентратор состоит из двух блоков: контроллера концентратора и ретранслятора концентратора. Ретранслятор - работающий под управлением протокола коммутатор между портом восходящей связи и портами нисходящей связи. Концентратор содержит также аппаратные средства поддержки перевода в исходное состояние и приостановки/возобновления подключения. Контроллер обеспечивает интерфейсные регистры, обеспечивающие передачу данных в главный контроллер и обратно. Определенное состояние и управляющие команды концентратора позволяют главному процессору конфигурировать концентратор, а также контролировать и управлять его портами.


Внешние концентраторы могут иметь собственный блок питания или же запитываться от шины USB.

Кабели и разъемы USB

Разъемы типа А используются для подключения к компьютеру или концентратору. Разъемы типа B используются для подключения к периферийным устройствам.

Все разъёмы USB, имеющие возможность входить в соединение друг с другом, рассчитаны на совместную работу.

Имеется электрическая совместимости всех контактов разъёма USB 2.0 с соответствующими контактами разъёма USB 3.0. При этом разъём USB 3.0 имеет дополнительные контакты, не имеющие соответствия в разъёме USB 2.0, и, следовательно, при соединении разъёмов разных версий "лишние" контакты не будут задействованы, обеспечивая нормальную работу соединения версии 2.0. Все гнёзда и штекеры между USB 3.0 Тип A и USB 2.0 Тип A рассчитаны на совместную работу. Размер гнезда USB 3.0 Тип B несколько больше, чем это могло бы потребоваться для штекера USB 2.0 Тип B и более ранних. При этом предусмотрено подключение в эти гнёзда и такого типа штекеров. Соответственно, для подключения к компьютеру периферийного устройства с разъёмом USB 3.0 Тип B можно использовать кабели обоих типов, но для устройства с разъёмом USB 2.0 Тип B - только кабель USB 2.0. Гнёзда eSATAp, обозначенные как eSATA/USB Combo, то есть имеющие возможность подключения к ним штекера USB, имеют возможность подключения штекеров USB Тип A: USB 2.0 и USB 3.0, но в скоростном режиме USB 2.0.

Разъёмы USB Type-C служат для подключения как к периферийным устройствам, так и к компьютерам, заменяя различные разъёмы и кабели типов A и B предыдущих стандартов USB, и предоставляя возможности расширения в будущем. 24-контактный двухсторонний разъём является достаточно компактным, близким по размерам к разъёмам микро-B стандарта USB 2.0. Размеры разъёма - 8,4 мм на 2,6 мм. Коннектор предоставляет 4 пары контактов для питания и заземления, две дифференциальные пары D+/D- для передачи данных на скоростях менее SuperSpeed (в кабелях Type-C подключена только одна из пар), четыре дифференциальные пары для передачи высокоскоростных сигналов SuperSpeed, два вспомогательных контакта (sideband), два контакта конфигурации для определения ориентации кабеля, выделенный канал конфигурационных данных (кодирование BMC - biphase-mark code) и контакт питания +5 V для активных кабелей.

Контакты разъёма и разводка кабеля USB Type-C

Type-C - штекер и гнездо

Кон. Название Описание Кон. Название Описание
A1 GND Заземление B12 GND Заземление
A2 SSTXp1 Диф. пара № 1 SuperSpeed, передача, положительный B11 SSRXp1 Диф. пара № 2 SuperSpeed, приём, положительный
A3 SSTXn1 Диф. пара № 1 SuperSpeed, передача, отрицательный B10 SSRXn1 Диф. пара № 2 SuperSpeed, приём, отрицательный
A4 V BUS Питание B9 V BUS Питание
A5 CC1 Канал конфигурации B8 SBU2 Sideband № 2 (SBU)
A6 Dp1 Диф. пара не-SuperSpeed, положение 1, положительный B7 Dn2 Диф. пара не-SuperSpeed, положение 2, отрицательный
A7 Dn1 Диф. пара не-SuperSpeed, положение 1, отрицательный B6 Dp2 Диф. пара не-SuperSpeed, положение 2, положительный
A8 SBU1 Sideband № 1 (SBU) B5 CC2 Канал конфигурации
A9 V BUS Питание B4 V BUS Питание
A10 SSRXn2 Диф. пара № 4 SuperSpeed, передача, отрицательный B3 SSTXn2 Диф. пара № 3 SuperSpeed, приём, отрицательный
A11 SSRXp2 Диф. пара № 4 SuperSpeed, передача, положительный B2 SSTXp2 Диф. пара № 3 SuperSpeed, приём, положительный
A12 GND Заземление B1 GND Заземление
  1. Неэкранированная дифференциальная пара, может использоваться для реализации USB Low Speed (1.0), Full Speed (1.0), High Speed (2.0) - до 480 Мбит/с
  2. В кабеле реализована только одна из дифференциальных пар не-SuperSpeed. Данный контакт не используется в штекере.
Назначение проводников в кабеле USB 3.1 Type-C
Разъём №1 кабеля Type-C Кабель Type-C Разъём №2 кабеля Type-C
Контакт Название Цвет оболочки проводника Название Описание Контакт Название
Оплётка Экран Оплётка кабеля Экран Внешняя оплётка кабеля Оплётка Экран
A1, B1, A12, B12 GND Лужёный GND_PWRrt1
GND_PWRrt2
Общая земля> A1, B1, A12, B12 GND
A4, B4, A9, B9 V BUS Красный PWR_V BUS 1
PWR_V BUS 2
V BUS питание A4, B4, A9, B9 V BUS
B5 V CONN Жёлтый
PWR_V CONN V CONN питание B5 V CONN
A5 CC Синий CC Канал конфигурирования A5 CC
A6 Dp1 Белый UTP_Dp Неэкранированная дифференциальная пара, positive A6 Dp1
A7 Dn1 Зелёный UTP_Dn Неэкранированная дифференциальная пара, negative A7 Dn1
A8 SBU1 Красный SBU_A Полоса передачи данных A B8 SBU2
B8 SBU2 Чёрный SBU_B Полоса передачи данных B A8 SBU1
A2 SSTXp1 Жёлтый * SDPp1 Экранированная дифференциальная пара #1, positive B11 SSRXp1
A3 SSTXn1 Коричневый * SDPn1 Экранированная дифференциальная пара #1, negative B10 SSRXn1
B11 SSRXp1 Зелёный * SDPp2 Экранированная дифференциальная пара #2, positive A2 SSTXp1
B10 SSRXn1 Оранжевый * SDPn2 Экранированная дифференциальная пара #2, negative A3 SSTXn1
B2 SSTXp2 Белый * SDPp3 Экранированная дифференциальная пара #3, positive A11 SSRXp2
B3 SSTXn2 Чёрный * SDPn3 Экранированная дифференциальная пара #3, negative A10 SSRXn2
A11 SSRXp2 Красный * SDPp4 Экранированная дифференциальная пара #4, positive B2 SSTXp2
A10 SSRXn2 Синий * SDPn4 Экранированная дифференциальная пара #4, negative B3 SSTXn2
* Цвета для оболочки проводников не установлены стандартом

Подключение ранее выпущенных устройств к компьютерам, оснащённым разъёмом USB Type-C, потребует кабеля или адаптера, имеющих штекер или разъём типа A или типа B на одном конце и штекер USB Type-C на другом конце. Стандартом не допускаются адаптеры с разъёмом USB Type-C, поскольку их использование могло бы создать «множество неправильных и потенциально опасных» комбинаций кабелей.

Кабели USB 3.1 с двумя штекерами Type-C на концах должны полностью соответствовать спецификации - содержать все необходимые проводники, должны быть активными, включающими в себя чип электронной идентификации, перечисляющий идентификаторы функций в зависимости от конфигурации канала и сообщения, определяемые вендором (VDM) из спецификации USB Power Delivery 2.0. Устройства с разъёмом USB Type-C могут опционально поддерживать шины питания с током в 1,5 или 3 ампера при напряжении 5 вольт в дополнение к основному питанию. Источники питания должны уведомлять о возможности предоставления увеличенных токов через конфигурационный канал либо полностью поддерживать спецификацию USB Power Delivery через конфигурационный контакт (кодирование BMC) или более старые сигналы, кодируемые как BFSK через контакт VBUS. Кабели USB 2.0, не поддерживающие шину SuperSpeed, могут не содержать чип электронной идентификации, если только они не могут передавать ток 5 ампер.

Спецификация коннекторов USB Type-C версии 1.0 была опубликована форумом разработчиков USB в августе 2014 года. Она была разработана примерно в то же время, что и спецификация USB 3.1.

Использование коннектора USB Type-C не обязательно означает, что устройство реализует высокоскоростной стандарт USB 3.1 Gen1/Gen2 или протокол USB Power Delivery.

    Универсальная последовательная шина является самым распространенным, и наверно, самым удачным компьютерным интерфейсом периферийных устройств за всю историю развития компьютерного оборудования, что подтверждается огромным количеством USB - устройств, некоторые из которых могут показаться несколько

Похожие публикации