Схема аутентификации. Тип Шифрования WiFi – Какой Выбрать, WEP или WPA2-PSK Personal-Enterprise Для Защиты Безопасности Сети? Eap шифрование

Authentication Protocol version 2 – Протокол аутентификации с предварительным согласованием вызова версии 2 компании Microsoft).
  • MS- CHAP (Microsoft Challenge Handshake Authentication Protocol ).
  • CHAP (Challenge Handshake Authentication Protocol ).
  • SPAP (Shiva Password Authentication Protocol – Протокол аутентификации пароля для клиентов Shiva).
  • PAP (Password Authentication Protocol ).
  • Неаутентифицированный доступ.
  • Эти методы аутентификации, показанные на рисунке 4.9 , можно найти в консоли управления RRAS, выбрав соответствующий сервер в правой панели и выбрав пункт Properties (Свойства). Затем во вкладке Security (Безопасность) щелкните на кнопке Authentication Methods (Методы аутентификации). Чтобы использовать нужные методы аутентификации, установите флажки рядом с названиями соответствующих методов.


    Рис. 4.9.

    EAP

    Протокол EAP – это расширение PPP, которое позволяет согласовывать произвольный метод аутентификации между удаленным клиентом и сервером. После создания соответствующего канала клиент и сервер согласовывают, какой тип механизма аутентификации EAP будет использоваться. К вариантам выбора относятся EAP -MD5, CHAP , EAP -TLS, смарт-карты и т.д. После принятия решения клиент использует выбранный механизм аутентификации для получения доступа к серверу RRAS и к сети.

    Как следует из названия EAP (Расширяемый протокол аутентификации), любое количество типов (методов) EAP может быть добавлено в любой момент. Чтобы увидеть, какие методы EAP вы используете на данный момент, выполните следующие шаги.

    1. Откройте консоль управления RRAS, выбрав Start/Programs/Administrative Tools (Пуск/Программы/Администрирование).
    2. В правой консоли щелкните на нужном сервере RRAS и выберите пункт Properties.
    3. Во вкладке Security щелкните на кнопке Authentication Methods , после чего появится окно Authentication Methods .
    4. Щелкните на кнопке EAP Methods (Методы EAP ), после чего вы увидите методы EAP , установленные на данный момент (см. рис. 4.10).

    Методы EAP . Система Windows Server 2003 может поддерживать любые типы методов EAP (например, смарт-карты) в виде встраиваемых модулей (plug-ins), но она автоматически предоставляет следующие два метода EAP .

    • EAP -MD5 CHAP . EAP - Message Digest 5 CHAP – это обязательный метод EAP , который поддерживает много одинаковых атрибутов с методом CHAP , но, кроме того, поддерживает отправку вызовов и ответов в виде сообщений EAP .
    • EAP -TLS ( EAP -Transport Level Security). Этот метод безопасности транспортного уровня осуществляет аутентификацию с помощью сертификатов. Данный метод является обязательным, если вы используете смарт-карты. EAP -TLS является в настоящее время наиболее сильным типом аутентификации, и для него требуется, чтобы сервер RRAS был членом домена. Он обеспечивает взаимную аутентификацию (аутентифицируются как клиент, так и сервер), шифрование, а также обмен секретными личными ключами .


    Рис. 4.10.
    CHAP

    CHAP , видимо, является наиболее употребительным протоколом аутентификации в настоящее время. RRAS Windows Server 2003 поддерживает три версии CHAP .

    • CHAP . Как отраслевой стандарт CHAP является протоколом аутентификации в форме "вызов-ответ", который поддерживает одностороннее шифрование ответов на вызовы. Для выполнения процесса аутентификации используются три шага. Сначала сервер направляет клиенту вызов, чтобы тот доказал свою идентичность. Затем клиент отправляет шифрованное сообщение CHAP в ответ на этот вызов. После этого сервер проверяет ответ, и если все правильно, то клиенту предоставляется доступ.
    • MS- CHAP . MS- CHAP – это модифицированная собственная версия CHAP от компании Microsoft. Главным отличием между MS- CHAP и CHAP в Windows Server 2003 является то, что пароль пользователя используется в обратной шифрованной форме.
    • MS-CHAPv2. Версия 2 MS- CHAP – это более сильный и более защищенный метод аутентификации, чем предыдущие реализации. К наиболее заметным отличиям относится то, что он больше не поддерживает NTLM (его можно использовать только с Windows Server 2003), он обеспечивает взаимную аутентификацию, а для отправки и приема данных используются отдельные криптографические ключи.
    SPAP

    Протокол аутентификации пароля для клиентов Shiva – это более старый, и, тем не менее, широко распространенный метод для дистанционного доступа. Клиенты, использующие программное обеспечение Shiva, должны аутентифицироваться с помощью SPAP. SPAP – это относительно простой метод аутентификации, с помощью которого происходит шифрование паролей, передаваемых через канал связи. Этот вариант аутентификации поддерживается системой Windows Server 2003 только для клиентов Shiva, которых вам, может быть, приходится обслуживать.

    PAP

    PAP (Протокол аутентификации пароля) не соответствует своему названию, поскольку это наименее защищенный из доступных в настоящее время методов аутентификации. Имя пользователя и пароль передаются через канал связи в виде нешифрованного текста. Любой злоумышленник, перехвативший данное соединение, может извлечь и использовать эту информацию для получения доступа к вашей сети. Поэтому использование PAP для аутентификации не рекомендуется.

    Неаутентифицированный доступ

    Этот вариант совершенно очевиден, и поэтому он не требует обсуждения. Ясно, что вам никогда не следует использовать этот вариант, если вы заинтересованы в защите вашей сети. Фактически этот вариант предоставляет открытый доступ любому, кто хочет подсоединиться дистанционным образом.

    Ответный вызов (Callback)

    Смысл этого термина следует из его названия. Удаленный клиент набирает номер сервера RRAS, после чего происходит проверка опознавательных данных этого клиента (пользовательское имя и пароль). После проверки опознавательных данных соединение прерывается, что позволяет серверу RRAS сделать ответный вызов удаленного клиента. Номер, по которому делает ответный вызов сервер RRAS, может быть указан во время начального вызова, или может потребоваться, чтобы сервер RRAS выполнил вызов по определенному номеру. Второй вариант является наиболее защищенным способом, поскольку он позволяет ограничить возможные источники удаленных соединений . Еще одним преимуществом обратного вызова является то, что он позволяет экономить затраты на соединение клиента.

    Идентификация вызова (Caller ID)

    Многие люди знакомы с идентификацией вызова, когда на дисплее телефона представлен номер телефона, с которого вам звонят. Ту же функцию можно применять к дистанционному доступу для повышения уровня безопасности.

    Идентификацию вызова можно использовать для проверки того, что удаленный клиент, набравший номер сервера RRAS, звонит с определенного заданного номера. Если клиент звонит не с этого номера, то соединение запрещается и происходит разъединение. Иногда оказывается, что телефонная компания не может снабдить вас номером вызывающей стороны, так как в некоторых местах POTS (обычная телефонная сеть) не может получать номер вызывающей стороны или вызывающая сторона блокировала свой номер, чтобы он не выводился на дисплее телефона. Если номер не может быть выведен на дисплее по какой-либо причине, то соединение отклоняется.

    Основы виртуальных частных сетей (VPN)

    О сетях VPN говорят очень много, но, что удивительно, они труднее всего для понимания среди понятий, касающихся Интернет и дистанционного доступа. Сети VPN известны уже много лет, но они не привлекали особого внимания до недавнего времени. Они стали поддерживаться Microsoft, начиная с реализации RRAS в Windows NT 4, и продолжают поддерживаться в RRAS Windows Server 2003.

    Путаница возникает в особенности из-за смысла слова "частные". Например, компании давно используют для своих отделений (филиалов) соединения через выделенные арендуемые линии. Это фактически частная сеть , которая расширена для связи с удаленными частями. Их также называют VPN через выделенную линию связи. ISP (поставщики услуг интернет ) или телефонные компании создают виртуальные каналы между различными местами. В этом случае имеется два типа виртуальных каналов: постоянные виртуальные каналы ( PVC ) и коммутируемые виртуальные каналы ( SVC ), которые обеспечивают частные соединения. Наиболее распространены PVC -каналы.

    Далее мы не будем рассматривать VPN через выделенные линии связи. RRAS поддерживает VPN через интернет . VPN через интернет – это средство, посредством которого два компьютера или две сети могут взаимодействовать частным (защищенным) образом через общую или открытую сеть , такую как интернет . Это также расширение вашей частной сети, но для него не требуется ISP или телефонная компания, чтобы получить для соединений отдельный дополнительный канал, и это потенциально экономит вам много денег. Сети VPN не ограничиваются соединениями между сайтами. Они также позволяют удаленным клиентам, находящимся в разъездах или работающим на дому, подсоединяться защищенным образом к сети компании. Например, удаленный клиент набирает номер для соединения со своим локальным ISP (экономя на телефонных расходах) и затем создает через интернет VPN -соединение с сетью своей компании.

    VPN придают безопасность и надежность соединению, которое иначе было бы незащищенным соединением через открытую сеть . VPN формируется на основе трех технологий, которые при совместном использовании образуют защищенное соединение. Это аутентификация, туннелирование и шифрование .

    Аутентификация

    Основной причиной аутентификации для VPN является необходимость метода, позволяющего гарантировать до начала сеанса VPN, что клиент и сервер соответствуют данным, с помощью которых они себя идентифицируют. Это не обязательно предусматривает обязательность взаимной аутентификации. Успешная аутентификация должна быть проведена до того, как будет создаваться туннель и передаваться данные, но используемый тип аутентификации зависит от типов клиентов в вашем окружении и выбранных вами методов аутентификации.

    Можно использовать любой из методов аутентификации, описанных выше в разделе "Защита соединений RRAS". Единственным недостатком является то, что если удаленные клиенты являются клиентами более ранних версий Windows, то они, возможно, не поддерживают протокол EAP . И действительно, клиенты Windows NT и Windows 9x не поддерживают этот протокол. Принимая решение, какой протокол использовать, помните, что важно обеспечить максимально возможный уровень аутентификации. Это означает, что нужно использовать такие протоколы аутентификации, как EAP , MS- CHAP или MS-CHAPv2.

    Туннелирование

    Туннелирование используется для инкапсуляции сетевых протоколов (TCP/IP, AppleTalk и NetBEUI ) в пакете IP, который может перемещаться через интернет. TCP/IP может перемещаться через интернет и сам по себе, но тогда он не будет частью туннеля или VPN. Туннель можно представить себе как путь, который прокладывает в земле крот для перемещения из одного места в другое.

    Прежде чем создать туннель, нужно убедиться, что две конечные точки соответствуют данным, с помощью которых они себя идентифицируют. После их аутентификации создается туннель и происходит пересылка информации между этими конечными точками, см. рис. 4.11 . Создание туннелей VPN в Windows Server 2003 происходит с помощью двух протоколов – PPTP и L2TP , которые описаны выше. L2TP является расширением относительно протокола туннелирования PPTP , и он использует аутентификацию и протокол шифрования IPSec.

    L2TP имеется только в версии RRAS для Windows 2000 и Windows Server 2003, и его могут использовать только клиенты Windows, начиная с Windows 2000. В таблице 4.4 описывается, какие клиенты поддерживают различные протоколы туннелирования. Вы можете добавить поддержку L2TP /IPSec к Windows 98, Windows Me и Windows NT 4, загрузив и установив L2TP /IPSec VPN Client с веб-сайта Microsoft.

    Шифрование

    Третьим основным компонентом VPN является шифрование. Шифрование это дополнительное превентивное средство, которое защищает данные, отправляемые через туннель. Данные шифруются перед инкапсуляцией, чтобы снизить риск их подделки в случае перехвата туннеля.


    Рис. 4.11.

    Windows Server 2003 поддерживает две технологии шифрования, Microsoft Point-to-Point Encryption ( MPPE ) и IPSec. В обеих моделях используется ключ шифрования для шифрования и дешифрования информации в точках отправки и получения. Вы можете потребовать, чтобы удаленные клиенты или сайты использовали любой из этих методов. Если они не используют указанный вами метод шифрования, то вы можете сконфигурировать RRAS, чтобы запретить данное соединение.

    Таблица 4.4. Клиенты и протоколы туннелирования, которые они поддерживают
    Клиент VPN Поддерживаемые протоколы туннелирования
    Windows Server 2003 PPTP , L2TP
    Windows XP PPTP ,

    Вопросы реализации VPN

    То, что сети VPN представляют наиболее передовые технологии для дистанционного доступа, не обязательно означает, что VPN являются подходящим решением для вашей ситуации. Прежде чем реализовать такое решение в вашем сетевом окружении Windows Server 2003, вы должны учесть следующие факторы.

    • Безопасность . Вопросы безопасности должны быть одним из наиболее важных факторов, влияющих на ваше решение использовать VPN. Вы должны задаться двумя вопросами. Во-первых, не будет ли VPN "излишеством" для типа информации, которую вы передаете? Например, вы можете просто отправлять неконфиденциальную электронную почту. Во-вторых, будет ли VPN удовлетворять вашим требованиям безопасности. В качестве примера обычно приводят государственные учреждения. Например, военные даже не будут рассматривать возможность использования VPN через открытую сеть, несмотря на уровень безопасности, который предполагает эта технология.
    • Финансовые вопросы . Начальные и текущие расходы на реализацию VPN в сетевом окружении Windows Server 2003 ничтожны по сравнению с арендуемыми линиями. VPN, несомненно, дает вам экономию средств, поскольку в настоящее время сайты и удаленные клиенты могут подсоединяться к сети компании защищенным образом без дополнительных расходов на оплату телефона и т.п. Ясно, что удаленные пользователи могли бы использовать номер 800 (код бесплатных звонков), но это не решает проблему в целом и все же требует существенных затрат.
    • Пропускная способность , Поскольку для сетей VPN требуется аутентификация и шифрование, скорость передачи данных (по определению) будет ниже, чем без них. При использовании VPN можно наблюдать снижение производительности от 30 до 50 процентов. Вам потребуется сравнить это снижение производительности с получаемым уровнем безопасности.

    Имеется довольно много факторов, которые требуется продумать, прежде чем реализовать VPN. Но если вы рассмотрели эти три вопроса, то будете более уверены в своем решении включать (или не включать) возможности VPN в свою сеть Windows Server 2003.

    Выбор варианта реализации VPN

    Имеются два основных типа реализации VPN: коммутируемое VPN-соединение (dial-up VPN) и соединение между сайтами (site to site). Сочетание этих двух типов можно определить как третий тип.

    • Коммутируемое VPN-соединение . Обычно удаленные клиенты набирают номер телефона своего локального провайдера услуг Интернет (ISP) и затем "звонят" на сервер VPN Windows Server 2003, чтобы установить VPN-соединение между этим сервером VPN и удаленным клиентом. Это дает экономию расходов на междугородние телефонные соединения для удаленного клиента, а также дает экономию в том месте, где находится сервер VPN, так как во многих случаях это позволяет избежать установки большого числа модемов и других устройств дистанционного доступа, используемых для соединений.
    • Соединение между сайтами . Этот вариант является наиболее распространенным вариантом реализации VPN. При этом сценарии вы используете два или более серверов VPN Windows Server 2003 для создания VPN между ними. Между этими двумя сайтами определяется защищенный обмен информацией. Пользователи любой из этих сетей могут взаимодействовать с другим удаленным сайтом.
    • Сочетание этих типов . В окружениях Windows Server 2003, где имеются как удаленные клиенты, так и сайты, можно создавать реализации VPN, которые могут обслуживать оба типа соединений.

    методы аутентификации:

    Message Digest 5 (MD5) -- процедура односторонней аутентификации саппликанта сервером аутентификации, основанная на применении хэш-суммы MD5 имени пользователя и пароля как подтверждение для сервера RADIUS. Данный метод не поддерживает ни управления ключами, ни создания динамических ключей. Тем самым исключается его применение в стандарте 802.11i и WPA.

    Transport Layer Security (TLS) -- процедура аутентификации, которая предполагает использование цифровых сертификатов Х.509 в рамках инфраструктуры открытых ключей (Public Key Infrastructure -- PKI). EAP-TLS поддерживает динамическое создание ключей и взаимную аутентификацию между саппликантом и сервером аутентификации. Недостатком данного метода является необходимость поддержки инфраструктуры открытых ключей.

    Tunneled TLS (TTLS) -- EAP расширяющий возможности EAP-TLS. EAP-TTLS использует безопасное соединение, установленное в результате TLS-квитирования для обмена дополнительной информацией между саппликантом и сервером аутентификации.

    Так же существуют и другие методы:

    EAP-SIM, EAP-AKA - используются в сетях GSM мобильной связи

    LEAP - пропреоретарный метод от Cisco systems

    EAP-MD5 - простейший метод, аналогичный CHAP (не стойкий)

    EAP-MSCHAP V2 - метод аутентификации на основе логина/пароля пользователя в MS-сетях

    EAP-TLS - аутентификация на основе цифровых сертификатов

    EAP-SecureID - метод на основе однократных паролей

    Кроме вышеперечисленных, следует отметить следующие два метода, EAP-TTLS и EAP-PEAP. В отличие от предыдущих, эти два метода перед непосредственной аутентификацией пользователя сначала образуют TLS-туннель между клиентом и сервером аутентификации. А уже внутри этого туннеля осуществляется сама аутентификация, с использованием как стандартного EAP (MD5, TLS), или старых не-EAP методов (PAP, CHAP, MS-CHAP, MS-CHAP v2), последние работают только с EAP-TTLS (PEAP используется только совместно с EAP методами). Предварительное туннелирование повышает безопасность аутентификации, защищая от атак типа «man-in-middle», «session hihacking» или атаки по словарю.

    Протокол PPP засветился там потому, что изначально EAP планировался к использованию поверх PPP туннелей. Но так как использование этого протокола только для аутентификации по локальной сети - излишняя избыточность, EAP-сообщения упаковываются в «EAP over LAN» (EAPOL) пакеты, которые и используются для обмена информацией между клиентом и аутентификатором (точкой доступа).

    Схема аутентификации

    Она состоит из трех компонентов:

    Supplicant - софт, запущенный на клиентской машине, пытающейся подключиться к сети

    Authenticator - узел доступа, аутентификатор (беспроводная точка доступа или проводной коммутатор с поддержкой протокола 802.1x)

    Authentication Server - сервер аутентификации (обычно это RADIUS-сервер)

    Теперь рассмотрим сам процесс аутентификации. Он состоит из следующих стадий:

    Клиент может послать запрос на аутентификацию (EAP-start message) в сторону точки доступа.

    Точка доступа (Аутентификатор) в ответ посылает клиенту запрос на идентификацию клиента (EAP-request/identity message). Аутентификатор может послать EAP-request самостоятельно, если увидит, что какой-либо из его портов перешел в активное состояние.

    Клиент в ответ высылает EAP-response packet с нужными данными, который точка доступа (аутентификатор) перенаправляет в сторону Radius-сервера (сервера аутентификации).

    Сервер аутентификации посылает аутентификатору (точке доступа) challenge-пакет (запрос информации о подлинности клиента). Аутентификатор пересылает его клиенту.

    Далее происходит процесс взаимной идентификации сервера и клиента. Количество стадий пересылки пакетов туда-сюда варьируется в зависимости от метода EAP, но для беспроводных сетей приемлема лишь «strong» аутентификация с взаимной аутентификацией клиента и сервера (EAP-TLS, EAP-TTLS, EAP-PEAP) и предварительным шифрованием канала связи.

    На следующий стадии, сервер аутентификации, получив от клиента необходимую информацию, разрешает (accept) или запрещает (reject) тому доступ, с пересылкой данного сообщения аутентификатору. Аутентификатор (точка доступа) открывает порт для Supplicant-а, если со стороны RADIUS-сервера пришел положительный ответ (Accept).

    Порт открывается, аутентификатор пересылает клиенту сообщение об успешном завершении процесса, и клиент получает доступ в сеть.

    После отключения клиента, порт на точке доступа опять переходит в состояние «закрыт».

    Для коммуникации между клиентом (supplicant) и точкой доступа (authenticator) используются пакеты EAPOL. Протокол RADIUS используется для обмена информацией между аутентификатором (точкой доступа) и RADIUS-сервером (сервером аутентификации). При транзитной пересылке информации между клиентом и сервером аутентификации пакеты EAP переупаковываются из одного формата в другой на аутентификаторе.

    При развёртывании беспроводных сетей в домашних условиях или небольших офисах обычно используется вариант протокола безопасности WPA на основе общих ключей - WPA-PSK (Pre Shared Key), который также называют режимом WPA-Personal. Он использует статический ключ аналогично WEP. При использовании WPA-PSK в настройках точки доступа и профилях беспроводного соединения клиентов указывается пароль длиной от 8 до 63 печатных символов ASCII. При подключении пользователь должен будет ввести этот пароль и, если пароли совпадают с записями в базе, он получит разрешение на доступ в сеть.

    В режиме WPA-EAP (Extensible Authentication Protocol), который также называется режимом WPA-предприятие (WPA-Enterprise), запросы проверки подлинности пересылаются на внутренний сервер с протоколом RADIUS. Служба Сервер сетевой политики (Network Policy Server, NPS) обеспечивает проверку подлинности RADUIS на серверах. NPS-сервер может передавать запросы проверки подлинности на контроллер домена, позволяя защищенным беспроводным сетям WPA-EAP выполнять проверку подлинности контроллеров домена без ввода ключа пользователями.

    Режим WPA-EAP обеспечивает очень гибкую проверку подлинности. Например, можно настроить, чтобы пользователь подключался к защищенной производственной сети WPA-Enterprise с помощью смарт-карты. Поскольку WPA-EAP не использует статический ключ, этим режимом безопасности легче управлять, потому что не требуется изменять ключ в случае его определения хакером. Для поверки подлинности множество точек беспроводного доступа могут использовать один центральный сервер. Кроме того, этот режим безопасности взломать намного сложнее, чем WEP или WPA-PSK. беспроводный сеть шифрование криптографический

    Механизмы шифрования, которые используются для WPA-EAP и WPA-PSK, являются идентичными. Единственное отличие WPA-PSK состоит в том, что аутентификация производится с использованием пароля, а не по сертификату пользователя.

    Достоинства и недостатки

    Достоинствами WPA, по сравнению с WEP, являются:

    • 1. усовершенствованная схема шифрования данных RC4 на основе TKIP (Temporal Key Integrity Protocol - протокол краткосрочной целостности ключей).
    • 2. улучшенные механизмы контроля доступа - обязательная аутентификация 802.1x посредством протокола EAP.
    • 3. модель централизованного управления безопасностью и возможность интеграции с действующими схемами корпоративной аутентификации.
    • 4. возможность облегчения установки для домашних пользователей, которые могут применить специальный режим, автоматизирующий функции настройки безопасности WPA.

    Из недостатков можно выделить:

    • 1. защищенность WPA меньше, чем у WPA2.
    • 2. существования уязвимостей (описаны ниже),
    • 3. сюда можно отнести и то, что для работы с протоколом безопасности WPA необходимо, чтобы все устройства, подключенные к сети, располагали его поддержкой.

    Недостатки WPA-PSK - статический ключ можно взломать с помощью технологий полного перебора значений. Кроме того, статическими ключами очень сложно управлять в производственной среде. В случае взлома отдельного компьютера, отконфигурированного с таким ключом, потребуется изменить ключ на каждой точке беспроводного доступа.

    Источник: Башмаков А.В., Конспект лекция "Безопасность беспроводных сетей"

    Известные уязвимости

    Метод Бека-Тевса

    6 ноября 2008 года на конференции PacSec двумя немецкими студентами, Мартином Беком из Дрездена и Эриком Тевсом из Дармштадта, был представлен способ, позволяющий взломать ключ TKIP, используемый в WPA, за 12-15 минут.

    У TKIP было несколько особенностей, делавших его на тот момент самой надежной защитой. В частности, был предусмотрен контроль последовательности, в рамках которого точка доступа отвергала все пакеты, поступавшие вне очереди. Это защищало от так называемой "replay attack", при которой передача одних и тех же данных повторяется со злым умыслом и совсем не полезным "вложением". Также TKIP отличался 64-битным контролем целостности пакетов MIC, имевшим кодовое название MICHAEL. TKIP, помимо всего прочего, подразумевал передачу каждого пакета с уникальным ключом шифрования.

    Поскольку TKIP создавался с учетом возможности программного апгрейда оборудования, ранее поддерживавшего только WEP, то шифр RC4 использовался и в нем, как и 4 байта для контроля целостности (ICV). Предложенный Беком и Тевсом в докладе метод атаки действует с учетом некоторых предположений, приводимых авторами: атакуемая сеть использует TKIP для шифрования трафика между точкой доступа и клиентами; в сети для адресации используется IPv4 c заранее известным диапазоном адресов вроде 192.168.0.X; длинным интервалом между сменами ключа (3600 секунд в примере авторов метода); QoS (Quality of Service, качество обслуживания) активирован.

    Злоумышленник "прослушивает" трафик до тех пор, пока не найдет в нем ARP-запрос или ответ (ARP-протокол используется для сопоставления IP- и MAC-адресов в сети), такие пакеты легко вычисляются по характерной длине. Большая часть содержимого такого пакета хакеру известна, кроме последнего байта адреса, 8 байт MICHAEL и 4 байт контрольной суммы ICV. MICHAEL и ICV вместе образуют последние 12 байт. После этого хакер использует методы (chopchop), чтобы расшифровать оставшиеся байты. В TKIP есть два способа борьбы с такими атаками:

    • 1. Если клиент получает пакет с битым ICV, это считается ошибкой передачи данных, и пакет тихо "отменяется". Если ICV в порядке, но не проходит верификация по MIC, то точка доступа получает соответствующее уведомление, так называемый MIC failure report frame. Если таких уведомлений приходит более двух в течение минуты, связь прерывается, а все ключи обновляются после 60-секундного перерыва.
    • 2. Если пакет получен верно, то на канале, по которому он был получен, обновляется счетчик. Если входящий пакет получен с неверным порядковым номером, то есть вне очередности, такой пакет просто не принимается.

    Тем не менее, обходной путь был найден: хакеру просто нужно запустить атаку по другому каналу QoS, отличному от того, по которому прошел пакет. Если последний байт адреса в ходе атаки был угадан неверно, пакет просто "сбросится", если же он был угадан верно, клиент пошлет уведомление MIC failure, но счетчик при этом не сработает. Хакеру нужно выжидать по крайней мере 60 секунд между отсылкой пакетов, чтобы не спровоцировать 1-й вариант защиты. 12 с небольшим минут - и в распоряжении атакующего значения MIC и ICV. Осталось угадать только IP-адреса точки и клиента.

    Далее открывается широкое поле для экспериментов. Можно перенаправлять трафик, используя поддельные ARP-ответы. Если файрволл клиента не контролирует исходящий трафик, можно попытаться установить двустороннее соединение с клиентом, получая "ответы" не напрямую, а перенаправляя их через Интернет.

    В качестве мер противодействия Бек и Тевс предлагали три варианта:

    • 1. Установить интервал смены ключей 120 секунд и менее. За этот промежуток хакер успеет расшифровать лишь часть ICV;
    • 2. Отключить отсылку уведомления MIC failure;
    • 3. Отбросить TKIP и перейти на AES-CCMP.

    Метод Охигаси-Мории

    Метод, разработанный сотрудником университета Хиросимы Тосихиро Охигаси (Toshihiro Ohigashi) и профессором университета Кобе Масакату Мории (Masakatu Morii), создан на базе технологии Бека-Тевса (Beck-Tews). Данная технология предусматривает незначительную модификацию пакетов, зашифрованных по временному протоколу целостности ключа (Temporal Key Integrity Protocol, TKIP) в рамках механизма безопасности WPA, и отправку измененных пакетов обратно на точку доступа. Недостаток метода Бека-Тьюза заключается в том, что на его выполнение требуется от 10 до 15 минут.

    Метод, предложенный Охигаси и Мории, как и технология Бека-Тьюза, использует принцип атаки "человек посередине" (man-in-the-middle), который предусматривает вмешательство в коммуникацию между пользователями. Риск обнаружения атаки при таком подходе весьма высок, поэтому возможность сократить продолжительность атаки до 60 секунд является огромным преимуществом - по крайней мере, для хакеров.

    Необходимо заметить, что соединения WPA, использующие более защищённый стандарт шифрования ключа AES, а также WPA2-соединения, не подвержены этим атакам.

    Немного о WPA 2

    23 июля 2010 года была опубликована информация об уязвимости Hole196 в протоколе WPA2. Используя эту уязвимость, авторизовавшийся в сети злонамеренный пользователь может расшифровывать данные других пользователей, используя свой закрытый ключ. Никакого взлома ключей или брут-форса (полный перебор) не требуется.

    Более правильно было бы сказать, что протокол защиты WPA2 взломан, настолько обширную уязвимость нашли специалисты по сетевой безопасности из компании AirTight Networks. Они доказали, что протокол защиты данных WPA2, наиболее распространенный сейчас в сетях WiFi, можно взломать с целью получения любой информации из такой сети. Кроме того, специалисты утверждают, что уязвимость может помогать хакерам атаковать различные ресурсы, используя возможности взломанной сети.

    Обнаруженная уязвимость оказалась применимой ко всем беспроводным сетям, которые совместимы со стандартом IEEE802.11 Standard (Revision, 2007). Уязвимость получила и собственное название - Hole 196.

    Уязвимость была найдена при использовании атаки типа Man-in-the-middle. Человек, авторизовавшийся в такой сети, и воспользовавшийся эксплоитом, сможет перехватывать и расшифровывать данные, передаваемые внутри сети. Кроме того, при использовании этой "дыры" становится возможным подмена MAC-адресов. Таким образом, информацию можно передавать поддельным клиентским системам, и это же позволяет использовать ресурсы взломанной сети для атак на различные веб-ресурсы, без особого опасения быть обнаруженным.

    Способы взлома беспроводных сетей, защищенных WPA

    WPA-TKIP

    Уязвимость в протоколе WPA-TKIP, обнаруженной исследователями и членами команды aircrack-ng Мартином Бэком и Эриком Тюзом.

    В результате эксплуатации уязвимости основной ключ невозможно восстановить, можно лишь узнать ключ, используемый для проверки целостности и ключевой поток. На основании этого, не зная основного ключа, появляется возможность передавать пакеты в сеть. Получаются обратно пакеты по схеме, подобной easside-ng.

    Эту уязвимость можно проверить, используя тестовую программу tkiptun-ng добавленную в aircrack-ng. Известно, что для проведения атаки необходимо сменить MAC своего адаптера на MAC клиента, который атакуется. Также атакуемая точка доступа должна поддерживать QoS или WMM, использовать WPA + TKIP (не AES), и время смены временного ключа должно быть больше 3600 секунд. Если все это присутствует, то можно запускать: #tkiptun-ng -h -a -m 80 -n 100 <интерфейс>.

    После успешного исполнения можно получить поток ключа, с помощью которого можно создавать пакеты и запускать их в сеть.

    Протокол WPA2 не подвержен этой уязвимости.

    Классический взлом WPA. Перехват handshake.

    Суть атаки - в переборе всех возможных комбинаций ключа до его определения. Метод гарантирует успех, но если ключ достаточно длинный и не находиться в словарях, то можно считать себя защищенным от этой атаки. Таким образом, взламываются как WPA так и WPA2 сети, но лишь в PSK режиме.

    Шифрования WPA/WPA2 PSK уязвимы к атакам по словарю. Для осуществления этой атаки, необходимо получить 4-way WPA handshake между wifi-клиентом и точкой доступа (АР), а также словарь содержащий парольную фразу.

    WPA/WPA2 PSK работает следующим образом: он вытекает из ключа предварительной сессии, которая называется Pairwise Transient Key (PTK). PTK, в свою очередь использует Pre-Shared Key и пять других параметров - SSID, Authenticator Nounce (ANounce), Supplicant Nounce (SNounce), Authenticator MAC-address (MAC-адрес точки доступа) и Suppliant MAC-address (МАС-адрес wifi-клиента). Этот ключ в дальнейшем использует шифрование между точкой доступа (АР) и wifi-клиентом. Злоумышленник, который в этот момент времени прослушивает эфир, может перехватить все пять параметров. Единственной вещью, которой не владеет злодей это - Pre-Shared key. Pre-Shared key получается (создается) благодаря использованию парольной фразы WPA-PSK, которую отправляет пользователь, вместе с SSID. Комбинация этих двух параметров пересылается через Password Based Key Derivation Function (PBKDF2), которая выводит 256-bit"овый общий ключ.

    В обычной/типичной WPA/WPA2 PSK атаке по словарю, злоумышленник будет использовать словарь с программой (инструментом). Программа будет выводить 256-bit"овый Pre-Shared Key для каждой парольной фразы и будет использовать ее с другими параметрами, которые были описаны в создании PTK. PTK будет использоваться для проверки Message Integrity Check (MIC) в одном из пакетов handshake. Если они совпадут, то парольная фраза в словаре будет верной, в противном случае наоборот (неверной).

    Эта атака встроена в пакет aircrack-ng. Сначала нужно словить аутентификацию клиента, чтобы на основании ее уже восстанавливать основной ключ. Это проще всего сделать, запустив #airodump-n g и дождавшись аутентификации, либо запустив атаку деаутентификации #aireplay-ng -0 <количество деаутентификаций> . Через некоторое время, airodump-ng покажет, что аутентификация уловлена и записана в файл. После этого, нужно лишь запустить aircrack-ng <файл аутентификации> и ждать.

    Ускорить процесс можно используя большой словарь с часто используемыми словами. Еще поможет использование специализированных микроконтроллеров или видеокарт. Без этого перебор всех возможных ключей займет слишком много времени.

    Для противостояния такой атаке можно использовать достаточно длинные и необычные ключи.

    Wi-Fi Protected Setup

    Wi-Fi Protected Setup (WPS) - стандарт, предназначенный для полуавтоматического создания беспроводной домашней сети, созданный Wi-Fi Alliance. Официально запущен 8 января 2007 года.

    Большинство современных роутеров поддерживают механизм WPS. Целью протокола WPS является упрощение процесса настройки беспроводной сети, поэтому изначально он назывался Wi-Fi Simple Config. Протокол призван оказать помощь пользователям, которые не обладают широкими знаниями о безопасности в беспроводных сетях, и как следствие, имеют сложности при осуществлении настроек. WPS автоматически обозначает имя сети и задает шифрование, для защиты от несанкционированного доступа в сеть, при этом нет необходимости вручную задавать все параметры.

    Существует три варианта использования WPS:

    • 1. Push-Button-Connect (PBC). Пользователь нажимает специальную кнопку на роутере и на компьютере (программная), тем самым активируя процесс настройки.
    • 2. Ввод PIN-кода в веб-интерфейсе. Пользователь заходит через браузер в административный интерфейс роутера и вводит там PIN-код из восьми цифр, написанный на корпусе устройства, после чего происходит процесс настройки.
    • 3. При соединении с роутером можно открыть специальную сессию WPS, в рамках которой настроить роутер или получить уже имеющиеся настройки, если правильно ввести PIN-код. Для открытия подобной сессии не нужна никакая аутентификация. Получается, что PIN-код уже потенциально подвержен атаке типа bruteforce.

    Здесь PIN-код состоит из восьми цифр - следовательно, существует 10^8 (100 000 000) вариантов для подбора. Но дело в том, что последняя цифра PIN-кода представляет собой контрольную сумму, которая высчитывается на основании семи первых цифр. В итоге получаем уже 10^7 (10 000 000) вариантов. К тому же, проверка PIN-кода осуществляется в два этапа - каждая часть проверяется отдельно. Получаем 10^4 (10 000) вариантов для первой половины и 10^3 (1 000) для второй. Итого, всего лишь 11 000 вариантов для полного перебора. Но здесь стоит отметить один важный момент - возможная скорость перебора. Она ограничена скоростью обработки роутером WPS-запросов: одни точки доступа будут выдавать результат каждую секунду, другие - каждые десять секунд.

    Реализацию брутфорса можно выполнить с помощью утилиты wpscrack , а так же с помощью утилиты Reaver . Reaver будет предпочтительней в виду своей большей функциональности и поддержкой намного большего количества беспроводных адаптеров.

    Как и для любой другой атаки на беспроводную сеть, понадобится Linux. Для использования Reaver необходимо проделать следующие вещи:

    • § узнать имя беспроводного интерфейса - $ iwconfig ;
    • § перевести беспроводной адаптер в режим мониторинга - $ airmon-ng start *** (обычно это wlan0);
    • § узнать MAC-адрес точки доступа (BSSID) с шифрованием WPA/WPA2 и аутентификацией по ключу PSK - $ airodump-ng *** (обычно mon0);
    • § убедиться, что на точке активирован WPS - $ ./wash -i mon0 .

    После можно приступать непосредственно к перебору PIN"а. Необходимо указать имя интерфейса (переведенного ранее в режим мониторинга) и BSSID точки доступа:

    $ reaver -i mon0 -b 00:21:29:74:67:50 -vv

    Ключ "-vv" включает расширенный вывод программы, чтобы можно было убедиться, что все работает как надо. Если программа последовательно отправляет PIN"ы точке доступа, значит, все работает хорошо, и остается только ждать. Процесс может затянуться - примерно время может варьироваться от четырех до десяти часов. Как только он будет подобран, программа об этом сообщит и выдаст. Найденный ключ WPA-PSK, можно сразу же использовать для подключения.

    Также стоит отметить то, что существует более быстрый вариант. Дело в том, что у некоторых одинаковых моделей роутеров обычно оказывается одинаковый PIN. И, если, PIN модели выбранного роутера уже известен, то время взлома составляет буквально несколько секунд.

    Защититься от атаки можно пока одним способом - отключить WPS в настройках роутера. Правда, сделать это возможно далеко не всегда. Или, чтобы максимально противодействовать брутфорсу, можно блокировать WPS на неопределенное время после нескольких неудачных попыток ввода PIN-кода. То перебор может затянуться на очень и очень долгое время, в зависимости от выставленного значения периода блокировки.

    Немного о WPA/WPA2-Enterprise. Взлом MS-CHAPv2.

    В Enterprise, MS-CHAPv2 является только одним из возможных методов EAP. Популярность MS-CHAPv2 вызвана тем, что это наиболее простой метод для интеграции с продуктами Microsoft (IAS, AD, и т.д.).

    Утверждается, что MS-CHAPv2 взламывается с результативностью 100%. Для этого нужно перехватить обмен по протоколу MS-CHAPv2, после чего, используя уязвимости в шифровании можно вычислить реквизиты пользователя. Утверждается, что MS-CHAPv2 используется в системах VPN и WPA2-Enterprise. При этом и VPN и WPA2 упоминаются в контексте AAA-серверов (Authentication, Authorization, Accounting), что весьма логично, так как именно там и ловится нешифрованный MS-CHAP. Т.е., если перехватить MS-CHAPv2 обмен между клиентом и AAA-сервером - можно вычислить реквизиты пользователя.

    Но так как при наличии туннеля перехват сессии MS-CHAPv2 уже невозможен (вначале надо взломать шифрование туннеля), такой способ взлома действителен только, если сымитировать точку доступа. Тогда можно спокойно заполучить и клиента, и его MS-CHAPv2 сессию, при условии, что отсутствуют сертификаты на точке доступа и выключена проверка сертификатов на клиентах.

    Таким образом, для грамотно построенной беспроводной сети с WPA2-Enterprise на основе PEAP/MS-CHAPv2 такая атака не страшна. Разве что, вклиниться в канал между аутентификатором (точкой доступа, контроллером) и AAA-сервером, но это уже не относится к WPA.

    7 Протокол EAP

    Протокол EAP (Extensible Authentication Protocol – расширяемый протокол аутентификации) представляет собой расширение для протокола РРР. Он содержит стандартный механизм поддержки ряда методов аутентификации, включая жетоны, протокол Kerberos, открытые ключи и секретные ключи S/Key. Этот механизм полностью поддерживается как серверами удаленного доступа Windows NT Dial-Up Server, так и сетевыми клиентами удаленного доступа Dial-Up Networking Client. Протокол EAP является крайне важным компонентом безопасных ВЧС, обеспечивающим защиту от силовых атак, подбора пароля по словарю и попыток угадать его.

    Применение EAP расширяет возможности ВЧС на базе сервера удаленного доступа Windows NT Remote Access Service, позволяя производить аутентификацию с помощью модулей независимых производителей. Реализация этого протокола в среде Windows NT стала ответом Microsoft на многочисленные просьбы пользователей, которые не хотят отказываться от привычных аппаратных средств безопасности.

    Протокол EAP был предложен Целевой группой технической поддержки Интернета в качестве расширения для протокола РРР. Он содержит дополнительные механизмы аутентификации, необходимые для проверки РРР-соединений. Главная задача EAP состоит в динамическом подключении модулей аутентификации на обеих – клиентской и серверной – сторонах такого соединения. Этот протокол отличается очень высокой гибкостью, обеспечивая уникальность и вариативность аутентификации. Практическая реализация EAP включена в Microsoft Windows 2000.

    7.1 Обеспечение безопасности на уровне транзакций

    Очень высокий уровень безопасности ВЧС обеспечивается за счет применения микропроцессорных карточек и жетонов аутентификации. Микропроцессорные карточки представляют собой миниатюрные устройства размером с кредитную карточку со встроенными в них ЦПУ и небольшим объемом оперативной памяти. Сюда обычно заносятся данные, удостоверяющие личность пользователя (например, сертификаты открытого ключа), ключи шифрования и параметры учетной записи. Некоторые из микропроцессорных карточек содержат также алгоритм шифрования, благодаря которому криптоключи никогда не передаются вовне. В системах обеспечения безопасности удаленного доступа микропроцессорные карточки сегодня используются довольно редко, так как их поддерживают лишь немногие пакеты такого типа. Ситуация должна измениться с появлением Windows 2000. Эта операционная система позволит применять такие карточки при самых различных видах аутентификации, включая RAS, L2TP и PPTP.

    Жетоны аутентификации выпускаются различными производителями, каждый из которых закладывает в них собственный алгоритм работы. Но все они представляют собой ни что иное, как аппаратный генератор паролей. Некоторые жетоны оснащаются миниатюрным жидкокристаллическим дисплеем и клавиатурой, напоминая внешним видом калькуляторы. После того, как пользователь введет свой цифровой идентификационный номер, на экране дисплея появляется секретный цифровой код, который выполняет функции пароля. Обычно секретный код носит уникальный характер и никогда не повторяется даже на данном устройстве. Жетоны аутентификации очень удобны для организации доступа по коммутируемым каналам (например, при работе со службой удаленного доступа), а также для аутентификации хост-компьютеров. Сетевое применение таких жетонов, как правило, основано на клиент-серверных технологиях (либо построено по другим схемам с применением паролей), поэтому не исключает перехвата передаваемой секретной информации.

    Поддержку жетонов аутентификации, как и пользовательских сертификатов с открытым ключом, обеспечит синтетический протокол EAP-TLS (Extended Authentication Protocol-Transaction Layer Security – расширяемый протокол аутентификации и обеспечение безопасности на уровне транзакций). Он уже представлен на рассмотрение Целевой группы технической поддержки Интернета в качестве проекта спецификации на метод аутентификации повышенной надежности с применением сертификатов открытого ключа. При работе по схеме EAP-TLS клиент посылает на сервер удаленного доступа пользовательский сертификат, а в ответ получает с него серверный сертификат. Первый из них обеспечивает надежную аутентификацию пользователя на сервере, а второй гарантирует, что клиент вступил в контакт именно с тем сервером, который ему нужен. При проверке достоверности полученных данных оба участника такого обмена полагаются на цепочку доверенных органов сертификации.

    Сертификат пользователя может храниться непосредственно на клиентском ПК, с которого производится удаленный доступ, либо на внешней микропроцессорной карточке. В обоих случаях воспользоваться сертификатом можно только после идентификации пользователя, которая производится путем обмена той или иной информацией (идентификационного номера, комбинации имени пользователя и пароля и т.д.) между пользователем и клиентским ПК. Такой подход в полной мере отвечает принципу программно-аппаратной защиты, рекомендуемому большинством экспертов в области безопасности связи.

    EAP-TLS представляет собой, по сути, разновидность протокола EAP, реализованную в Windows 2000. Как и MS-CHAP, он служит для получения криптоключа, который используется протоколом MPPE для шифрования всех последующих данных.

    7.2 Аутентификация с помощью службы RADIUS

    RADIUS (Remote Authentication Dial-in User Service – служба дистанционной аутентификации пользователей по коммутируемым линиям) представляет собой центральный сервер с базой данных аутентификации и служит дополнением к другим протоколам аутентификации запросов. В основу этой службы положены протокол UDP, обслуживающий протоколы РРР, РАР и CHAP, а также функция входа в системы Unix и ряд других механизмов аутентификации. Кроме своего непосредственного предназначения служба RADIUS позволяет также производить учет бюджета ВЧС.

    Получив от сетевой службы аутентификации NAS запрос на подключение пользователя, сервер RADIUS сравнивает полученные данные с информацией из своей базы данных. Здесь же находится и центральное хранилище параметров подключений для всех зарегистрированных пользователей. При необходимости сервер не ограничивается простым ответом на запрос (ДА/НЕТ), а сообщает в NAS ряд сведений относительно конкретного пользователя. В частности, он может указать наибольшее время сеанса, выделенный статический IP-адрес и информацию, позволяющую произвести обратный вызов пользователя.

    Служба RADIUS может не только сама обращаться в свою базу данных для самостоятельной обработки запросов аутентификации, но и предоставлять ее другим серверам баз данных. В частности, ею может воспользоваться общий открытый сервер подключений сети или главный контроллер домена. Последний часто размещается на том же компьютере, что и сервер RADIUS, хотя это и не обязательно. Кроме всего прочего, сервер RADIUS может выполнять функции клиента-представителя удаленного сервера RADIUS.

    7.3 Учет бюджета ВЧС с помощью службы RADIUS

    Служба RADIUS позволяет осуществлять централизованное администрирование и учет бюджета нескольких туннельных серверов. Большинство серверов RADIUS можно настроить таким образом, чтобы они регистрировали запросы на аутентификацию в специальном учетном файле. Спецификациями предусмотрен набор стандартных сообщений, которыми служба NAS уведомляет сервер RADIUS о необходимости передавать учетную запись пользователя в начале каждого вызова, в его конце, либо повторять ее в процессе сеанса связи через заданные промежутки времени. А независимые разработчики предлагают ряд пакетов биллинга и аудита, которые на основе учетных записей RADIUS генерируют различные аналитические документы.

    7.4 Протокол EAP и RADIUS

    Чтобы совместно использовать протокол EAP с сервером RADIUS, необходимо внести коррективы как в службу NAS, так и в службу RADIUS. При традиционной схеме аутентификации эти службы производят одну-единственную транзакцию, состоящую из запроса и ответа на него. Однако при аутентификации по протоколу EAP служба NAS не может самостоятельно собрать информацию о клиенте, необходимую для аутентификации на сервере RADIUS. Для решения этой проблемы системный администратор может настроить службу NAS таким образом, что она будет направлять клиенту идентификатор, включив его в сообщение EAP. Тот в ответ сообщит службе сетевой аутентификации данные об имени пользователя и домене. Служба NAS включает их в запрос EAP-start и в таком виде направляет на сервер RADIUS. Дальнейший процесс аутентификации производится, как обычно: служба RADIUS передает клиенту через службу NAS сообщения EAP и отвечает на них до тех пор, пока аутентификация не даст положительного (или отрицательного) результата.




    Его имени и пароля и выдает разрешение на доступ к серверу выдачи разрешений, который, в свою очередь, дает “добро” на использование необходимых ресурсов сети. Однако данная модель не отвечает на вопрос о надежности защиты информации, поскольку, с одной стороны, пользователь не может посылать идентификационному серверу свой пароль по сети, а с другой – разрешение на доступ к обслуживанию в сети...



    Протоколом VPN является протокол двухточечной туннельной связи (Point-to-Point Tunnelling Protocol – PPTP). Разработан он компаниями 3Com и Microsoft с целью предоставления безопасного удаленного доступа к корпоративным сетям через Интернет. PPTP использует существующие открытые стандарты TCP/IP и во многом полагается на устаревший протокол двухточечной связи РРР. На практике РРР так и остается...

    Рассмотрим несколько методов аутентификации беспроводной сети WLAN, а именно: открытую аутентификацию, PSK и EAP.

    Открытая аутентификация

    По умолчанию аутентификация беспроводных устройств не требуется. Всем устройствам разрешено устанавливать соединения независимо от их типа и принадлежности. Это называется открытой аутентификацией . Открытая аутентификация должна использоваться только в общедоступных беспроводных сетях, например, в школах и интернет-кафе (ресторанах). Она может использоваться в сетях, где аутентификация будет выполняться другими средствами после подключения к сети.

    Предварительно согласованный ключ (PSK)

    При использовании режима PSK точка доступа и клиент должны использовать общий ключ или кодовое слово. Точка доступа отправляет клиенту случайную строку байтов. Клиент принимает эту строку, шифрует ее (или скремблирует), используя ключ, и отправляет ее обратно в точку доступа. Точка доступа получает зашифрованную строку и для ее расшифровки использует свой ключ. Если расшифрованная строка, принятая от клиента, совпадает с исходной строкой, отправленной клиенту, то клиенту дается разрешение установить соединение.

    В этом случае выполняется односторонняя аутентификация, т.е. точка доступа проверяет реквизиты подключаемого узла. PSK не подразумевает проверки узлом подлинности точки доступа, а также не проверяет подлинности пользователя, подключающегося к узлу.

    Расширяемый протокол аутентификации (EAP)

    EAP обеспечивает взаимную или двухстороннюю аутентификацию, а также аутентификацию пользователя. Если на стороне клиента установлено программное обеспечение EAP, клиент взаимодействует с внутренним сервером аутентификации, таким как служба удаленной аутентификации пользователей с коммутируемым доступом (RADIUS ). Этот внутренний сервер работает независимо от точки доступа и ведет базу данных пользователей, имеющих разрешение на доступ в сеть. При применении EAP пользователь, а не только узел, должен предъявить имя и пароль, которые затем проверяются по базе данных сервера RADIUS. Если предъявленные учетные данные являются допустимыми, пользователь рассматривается как прошедший аутентификацию.

    Похожие публикации